×

Local limit theorem for randomly deforming billiards. (English) Zbl 1473.37033

Summary: We study limit theorems in the context of random perturbations of dispersing billiards in finite and infinite measure. In the context of a planar periodic Lorentz gas with finite horizon, we consider random perturbations in the form of movements and deformations of scatterers. We prove a central limit theorem for the cell index of planar motion, as well as a mixing local limit theorem for piecewise Hölder continuous observables. In the context of the infinite measure random system, we prove limit theorems regarding visits to new obstacles and self-intersections, as well as decorrelation estimates. The main tool we use is the adaptation of anisotropic Banach spaces to the random setting.

MSC:

37C83 Dynamical systems with singularities (billiards, etc.)
37H10 Generation, random and stochastic difference and differential equations
37A40 Nonsingular (and infinite-measure preserving) transformations
37A05 Dynamical aspects of measure-preserving transformations
37A25 Ergodicity, mixing, rates of mixing
37A50 Dynamical systems and their relations with probability theory and stochastic processes

References:

[1] Aaronson, J.; Denker, M., Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps, Stoch. Dyn., 1, 2, 193-237 (2001) · Zbl 1039.37002
[2] Aimino, R.; Nicol, M.; Vaienti, S., Annealed and quenched limit theorems for random expanding dynamical systems, Probab. Theory Relat. Fields, 162, 1, 233-274 (2015) · Zbl 1351.37210
[3] Bálint, P.; Tóth, P., Correlation decay in certain soft billiards, Commun. Math. Phys., 243, 55-91 (2003) · Zbl 1078.37028
[4] Billingsley, P., Convergence of Probability Measures (1999), New York: Wiley, New York · Zbl 0172.21201
[5] Bolthausen, E., A central limit theorem for two-dimensional random walks in random sceneries, Ann. Probab., 17, 108-115 (1989) · Zbl 0679.60028
[6] Borodin, AN, A limit theorem for sums of independent random variables defined on a recurrent random walk, (Russian) Dokl Akad. Nauk SSSR, 246, 4, 786-787 (1979)
[7] Borodin, A.N.: Limit theorems for sums of independent random variables defined on a transient random walk. Investigations in the theory of probability distributions, IV. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 85, 17-29, 237, 244 (1979) · Zbl 0417.60027
[8] Bunimovich, LA; Sinai, YG; Chernov, NI, Markov partitions for two-dimensional billiards, Russ. Math. Surv., 45, 105-152 (1990) · Zbl 0721.58036
[9] Bunimovich, LA; Sinai, YG; Chernov, NI, Statistical properties of two-dimensional hyperbolic billiards, Russ. Math. Surv., 46, 47-106 (1991) · Zbl 0780.58029
[10] Castell, F.; Guillotin-Plantard, N.; Pène, F., Limit theorems for one and two-dimensional random walks in random scenery, Ann. Inst. Henri Poincaré, 49, 506-528 (2013) · Zbl 1278.60046
[11] Chernov, N., Sinai billiards under small external forces, Ann. Henri Poincaré, 2, 2, 197-236 (2001) · Zbl 0994.70009
[12] Chernov, N.; Markarian, R., Chaotic Billiards (2006), Providence, RI: AMS, Providence, RI · Zbl 1101.37001
[13] Cohen, G., Conze, J.-P.: On the quenched functional CLT in 2d random sceneries, examples. Preprint arXiv:1908.03777 · Zbl 1514.60044
[14] Deligiannidis, G.; Utev, S., An asymptotic variance of the self-intersections of random walks, Sib. Math. J., 52, 639-650 (2011) · Zbl 1227.60059
[15] Demers, MF; Zhang, H-K, Spectral analysis of the transfer operator for the Lorentz gas, J. Mod. Dyn., 5, 4, 665-709 (2011) · Zbl 1321.37034
[16] Demers, MF; Zhang, H-K, A functional analytic approach to perturbations of the Lorentz gas, Commun. Math. Phys., 324, 3, 767-830 (2013) · Zbl 1385.37050
[17] Demers, MF; Zhang, H-K, Spectral analysis of hyperbolic systems with singularities, Nonlinearity, 27, 379-433 (2014) · Zbl 1347.37070
[18] Dolgopyat, D.; Szász, D.; Varjú, T., Recurrence properties of planar Lorentz process, Duke Math. J., 142, 241-281 (2008) · Zbl 1136.37022
[19] Dunford, N.; Schwartz, JT, Linear Operators. Part I: General Theory (1964), New York: Wiley, New York
[20] Dvoretzky, A., Erdös, P.: Some problems on random walk in space. In: Proc. Berkeley Sympos. Math. Statist. Probab., pp. 353-367 (1955) · Zbl 0044.14001
[21] Guillotin-Plantard, N.; Dos Santos, RS; Poisat, J., A quenched central limit theorem for planar random walks in random sceneries, Electron. Commun. Probab., 19, 3, 1-9 (2014) · Zbl 1329.60075
[22] Guivarc’h, Y.; Hardy, J., Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d’Anosov, Ann. Inst. Henri Poincaré, 24, 1, 73-98 (1988) · Zbl 0649.60041
[23] Hennion, H.; Hervé, L., Stable laws and products of positive random matrices, J. Theor. Probab., 21, 4, 966-981 (2008) · Zbl 1154.60014
[24] Kalikow, SA, \(T, T^{-1}\) transformation is not loosely Bernoulli, Ann. Math. Second Ser., 115, 2, 393-409 (1982) · Zbl 0523.28018
[25] Keller, G.; Liverani, C., Stability of the spectrum for transfer operators, Annali della Scuola Normale Superiore di Pisa, Scienze Fisiche e Matematiche, (4), XXVIII, 141-152 (1999) · Zbl 0956.37003
[26] Kesten, H.; Spitzer, F., A limit theorem related to an new class of self similar processes, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 50, 5-25 (1979) · Zbl 0396.60037
[27] Nagaev, SV, Some limit theorems for stationary Markov chains, Theory Probab. Appl., 11, 4, 378-406 (1957)
[28] Pène, F., Applications des propriétés stochastiques de billards dispersifs, C. R. Acad. Sci., 330, I, 1103-1106 (2000) · Zbl 0976.37018
[29] Pène, F., Asymptotic of the number of obstacles visited by the planar Lorentz process, Discrete Contin. Dyn. Syst. Ser. A, 24, 2, 567-588 (2009) · Zbl 1175.37043
[30] Pène, F., Planar Lorentz process in a random scenery, Ann. l’Inst. Henri Poincaré, Probab. Stat., 45, 3, 818-839 (2009) · Zbl 1189.37045
[31] Pène, F.: An asymptotic estimate of the variance of the self-intersections of a planar periodic Lorentz process. arXiv:1303.3034 · Zbl 1304.60043
[32] Pène, F., Mixing and decorrelation in infinite measure: the case of the periodic sinai billiard, Ann. Institut Henri Poincaré, 55, 1, 378-411 (2019) · Zbl 1420.37004
[33] Pène, F.; Saussol, B., Back to balls in billiards, Commun. Math. Phys., 293, 837-866 (2010) · Zbl 1202.37056
[34] Pène, F., Thomine, D.: Potential kernel, hitting probabilities and distributional asymptotics. Ergodic Theory Dyn. Syst. 10.1017/etds.2018.136 · Zbl 1451.60089
[35] Szász, D.; Varjú, T., Local limit theorem for the Lorentz process and its recurrence in the plane, Ergodic Theory Dyn. Syst., 24, 1, 257-278 (2004) · Zbl 1115.37009
[36] Serfling, RJ, Moment inequalities for the maximum cumulative sum, Ann. Math. Stat., 41, 1227-1234 (1970) · Zbl 0272.60013
[37] Sinai, YG, Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards, Uspehi Mat. Nauk, 25, 141-192 (1970) · Zbl 0252.58005
[38] Young, L-S, Statistical properties of dynamical systems with some hyperbolicity, Ann. Math. Second Ser., 147, 3, 585-650 (1998) · Zbl 0945.37009
[39] Weiss, B., The isomorphism problem in ergodic theory, Bull. A.M.S., 78, 668-684 (1972) · Zbl 0255.28014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.