×

Optimization approach for axisymmetric electric field cloaking and shielding. (English) Zbl 1473.35214

Summary: In this paper we study inverse problems of electric conductivity that arise in the design of spherical shielding or cloaking shells and other functional devices used to control static electric fields. The shells are considered consisting of a finite number of layers filled with homogeneous isotropic or anisotropic medium. The inverse problems under study are reduced to control problems with the layers electric conductivities taken as controls. A different choice of minimized functionals allows us to solve a wide range of design problems using one approach. A numerical algorithm to solve these problems is based on particle swarm optimization. Various results of numerical experiments are discussed in order to find the most effective designs. The findings obtained in this study describe a broad set of specific easy-to-manufacture structures that have the highest cloaking or shielding performance in the class of layered shells.

MSC:

35J57 Boundary value problems for second-order elliptic systems
35R30 Inverse problems for PDEs
65K10 Numerical optimization and variational techniques

References:

[1] Alù A, Engheta N. Achieving transparency with plasmonic and metamaterial coatings. Phys Rev E. 2005;72:016623. doi: 10.1103/PhysRevE.72.016623 · doi:10.1103/PhysRevE.72.016623
[2] Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science. 2006;312:1780-1782. doi: 10.1126/science.1125907 · Zbl 1226.78003 · doi:10.1126/science.1125907
[3] Leonhardt U. Optical conformal mapping. Science. 2006;312:1777-1780. doi: 10.1126/science.1126493 · Zbl 1226.78001 · doi:10.1126/science.1126493
[4] Gomory F, Solovyov M, Souc J, et alExperimental realization of a magnetic cloak. Science. 2012;335:1466-1468. doi: 10.1126/science.1218316 · doi:10.1126/science.1218316
[5] Guenneau S, Amra C, Veynante D. Transformation thermodynamics: cloaking and concentrating heat flux. Opt Express. 2012;20:8207-8218. doi: 10.1364/OE.20.008207 · doi:10.1364/OE.20.008207
[6] Yang F, Mei ZL, Jin TZ, et al. DC electric invisibility cloak. Phys Rev Lett. 2012;109:053902. · doi:10.1103/PhysRevLett.109.053902
[7] Han T, Yuan T, Li B, et al. Homogeneous thermal cloak with constant conductivity and tunable heat localization. Sci Rep. 2013;3:1593. doi: 10.1038/srep01593 · doi:10.1038/srep01593
[8] Jiang WX, Luo CY, Mei ZL, et al. An ultrathin but nearly perfect direct current electric cloak. Appl Phys Lett. 2013;102:014102. · doi:10.1063/1.4774301
[9] Huang Y, Feng Y, Jiang T. Electromagnetic cloaking by layered structure of homogeneous isotropic materials. Opt Express. 2007;15:11133-11141. doi: 10.1364/OE.15.011133 · doi:10.1364/OE.15.011133
[10] Narayana S, Sato V. Heat flux manipulation with engineered thermal materials. Phys Rev Lett. 2012;108:214303. doi: 10.1103/PhysRevLett.108.214303 · doi:10.1103/PhysRevLett.108.214303
[11] Ooi EH, Popov V. Transformation thermodynamics for heat flux management based on segmented thermal cloaks. Eur Phys J Appl Phys. 2013;63:10903. doi: 10.1051/epjap/2013130150 · doi:10.1051/epjap/2013130150
[12] Schittny R, Kadic M, Guenneau S, et al. Experiments on transformation thermodynamics: molding the flow of heat. Phys Rev Lett. 2013;110:195901. doi: 10.1103/PhysRevLett.110.195901 · doi:10.1103/PhysRevLett.110.195901
[13] Han T, Ye H, Luo Y, et al. Manipulating dc currents with bilayer bulk natural materials. Adv Mater. 2014;26:3478-3483. doi: 10.1002/adma.201305586 · doi:10.1002/adma.201305586
[14] Xu H, Shi X, Gao F, et al. Ultrathin three-dimensional thermal cloak. Phys Rev Lett. 2014;112:054301. · doi:10.1103/PhysRevLett.112.054301
[15] Tikhonov AN, Arsenin VY. Solutions of ill-posed problems. New York (NY): Halsted; 1977. · Zbl 0354.65028
[16] Beilina L, Smolkin E. Computational design of acoustic materials using an adaptive optimization algorithm. Appl Math Inf Sci. 2018;12:33-43. doi: 10.18576/amis/120103 · doi:10.18576/amis/120103
[17] Cakoni F, Kovtunenko VA. Topological optimality condition for the identification of the center of an inhomogeneity. Inverse Probl. 2018;34:035009. · Zbl 1390.74157 · doi:10.1088/1361-6420/aaa997
[18] Khludnev A, Popova T. Semirigid inclusions in elastic bodies: mechanical interplay and optimal control. Comput Math Appl. 2019;77:253-262. doi: 10.1016/j.camwa.2018.09.030 · Zbl 1442.74058 · doi:10.1016/j.camwa.2018.09.030
[19] Beilina L, Klibanov MV. Globally strongly convex cost functional for a coefficient inverse problem. Nonlin Anal Real World Appl. 2015;22:272-288. doi: 10.1016/j.nonrwa.2014.09.015 · Zbl 1515.35336 · doi:10.1016/j.nonrwa.2014.09.015
[20] Klibanov MV, Kolesov AE. Convexification of a 3-D coefficient inverse scattering problem. Comput Math Appl. 2019;77:1681-1702. doi: 10.1016/j.camwa.2018.03.016 · Zbl 1442.78007 · doi:10.1016/j.camwa.2018.03.016
[21] Klibanov MV, Kolesov AE, Nguyen DL. Convexification method for an inverse scattering problem and its performance for experimental backscatter data for buried targets. SIAM J Imaging Sci. 2019;12:576-603. doi: 10.1137/18M1191658 · doi:10.1137/18M1191658
[22] Klibanov MV, Li J, Zhang W. Convexification of electrical impedance tomography with restricted Dirichlet-to-Neumann map data. Inverse Probl. 2019;35:035005. · Zbl 1410.65432 · doi:10.1088/1361-6420/aafecd
[23] Buhgeim AL, Klibanov MV. Global uniqueness of a class of multidimensional inverse problems. Soviet Math Dokl. 1981;24:244-247. · Zbl 0497.35082
[24] Xu S, Wang Y, Zhang B, et al. Invisibility cloaks from forward design to inverse design. Sci China Inf Sci. 2013;56:120408. · doi:10.1007/s11432-013-5033-0
[25] Popa BI, Cummer SA. Cloaking with optimized homogeneous anisotropic layers. Phys Rev A. 2009;79:023806. doi: 10.1103/PhysRevA.79.023806 · doi:10.1103/PhysRevA.79.023806
[26] Xi S, Chen H, Zhang B. Route to low-scattering cylindrical cloaks with finite permittivity and permeability. Phys Rev B. 2009;79:155122. doi: 10.1103/PhysRevB.79.155122 · doi:10.1103/PhysRevB.79.155122
[27] Alekseev GV, Levin VA. An optimization method for problems of thermal cloaking of material bodies. Doklady Phys. 2016;61:546-550. doi: 10.1134/S102833581611001X · doi:10.1134/S102833581611001X
[28] Alekseev GV. Analysis of a two-dimensional thermal cloaking problem on the basis of optimization. Comput Math Math Phys. 2018;58:478-492. doi: 10.1134/S0965542518040048 · Zbl 1459.74046 · doi:10.1134/S0965542518040048
[29] Fachinotti VD, Ciarbonetti AA, Peralta I, et al. Optimization-based design of easy-to-make devices for heat flux manipulation. Int J Therm Sci. 2018;128:38-48. doi: 10.1016/j.ijthermalsci.2018.02.009 · doi:10.1016/j.ijthermalsci.2018.02.009
[30] Fujii G, Akimoto Y, Takahashi M. Direct-current electric invisibility through topology optimization. J Appl Phys. 2018;123:233102. doi: 10.1063/1.5022881 · doi:10.1063/1.5022881
[31] Alekseev GV, Levin VA, Tereshko DA. Optimization analysis of the thermal cloaking problem for a cylindrical body. Doklady Phys. 2017;62:71-75. doi: 10.1134/S102833581702001X · doi:10.1134/S102833581702001X
[32] Alekseev GV, Levin VA, Tereshko DA. The optimization method in design problems of spherical layered thermal shells. Doklady Phys. 2017;62:465-469. doi: 10.1134/S1028335817100044 · doi:10.1134/S1028335817100044
[33] Alekseev GV, Tereshko DA. Particle swarm optimization-based algorithms for solving inverse problems of designing thermal cloaking and shielding devices. Int J Heat Mass Transf. 2019;135:1269-1277. doi: 10.1016/j.ijheatmasstransfer.2019.02.072 · doi:10.1016/j.ijheatmasstransfer.2019.02.072
[34] Poli R, Kennedy J, Blackwel T. Particle swarm optimization. Swarm Intel. 2007;1:33-57. doi: 10.1007/s11721-007-0002-0 · doi:10.1007/s11721-007-0002-0
[35] Alekseev GV, Tereshko DA. Optimization method for axisymmetric problems of electric cloaking of material bodies. Comp Math Math Phys. 2019;59:207-223. doi: 10.1134/S0965542519020027 · Zbl 1426.78037 · doi:10.1134/S0965542519020027
[36] Alekseev G, Tereshko D, Shestopalov Y2018. arXiv:1901.00543.
[37] Chiang AC. Elements of dynamic optimization. New York (NY): McGraw-Hill; 1992.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.