×

Thirty traveling wave solutions to the systems of ion sound and Langmuir waves. (English) Zbl 1473.35093

Summary: Nine kinds of general solutions of certain popular first-order ordinary differential equation are obtained by direct calculations. Compared with complete discrimination system for polynomials, our classifications of solutions straightly depend on the coefficients of the ordinary differential equation and hence are easier to be employed. According to the nine kinds of solutions, we establish thirty traveling wave solutions to the coupled systems of ion sound and Langmuir waves, including rational function solution, exponential function solution, trigonometric function solutions, hyperbolic function solutions and Jacobi elliptic function solutions. To the best of our knowledge, many of them are new. Solutions discussed in two recent articles are showed to be equivalent to some special cases of our thirty traveling wave solutions. Our solutions include the kink and anti-kink soliton solutions, dark and bright soliton solutions as well as periodic soliton solutions and solitary wave solutions. We believe that these solutions will be of great use to researchers concerning with nonlinear physical phenomena. In addition, the famous (1+1)-dimensional dispersive long wave equations is taken to illustrate the applicability of these thirty solutions.

MSC:

35C07 Traveling wave solutions
35Q51 Soliton equations
33E05 Elliptic functions and integrals
Full Text: DOI

References:

[1] Baskonus, HM; Bulut, H., New wave behaviors of the system of equations for the ion sound and Langmuir waves, Wave. Random Complex, 26, 613-625 (2016) · Zbl 1365.78006 · doi:10.1080/17455030.2016.1181811
[2] Manafian, J., Application of the ITEM for the system of equations for the ion sound and Langmuir waves, Opt. Quant. Electron., 49, 17 (2017) · doi:10.1007/s11082-016-0860-z
[3] Seadawy, AR; Kumar, D.; Hosseini, K.; Samadani, F., The system of equations for the ion sound and Langmuir waves and its new exact solutions, Results Phys., 9, 1631-1634 (2018) · doi:10.1016/j.rinp.2018.04.064
[4] Ahmed, I.; Seadawy, AR; Lu, D., Rogue waves generation and interaction of multipeak rational solitons in the system of equations for the ion sound and Langmuir waves, Int. J. Mod. Phys. B, 33, 1950277 (2019) · Zbl 1428.35338 · doi:10.1142/S0217979219502771
[5] Seadawy, AR; Ali, A.; Lu, D., Structure of system solutions of ion sound and Langmuir dynamical models and their applications, Pramana-J. Phys., 92, 88 (2019) · Zbl 1428.35338 · doi:10.1142/S0217979219502771
[6] Mohammed, WW; Abdelrahman, MAE; Inc, M.; Hamza, AE; Akinlar, MA, Soliton solutions for system of ion sound and Langmuir waves, Opt. Quant. Electron., 52, 460 (2020) · doi:10.1007/s11082-020-02581-5
[7] Shakeel, M.; Iqbal, MA; Din, Q.; Hassan, QM; Ayub, K., New exact solutions for coupled nonlinear system of ion sound and Langmuir waves, Indian J. Phys., 94, 885-894 (2020) · doi:10.1007/s12648-019-01522-7
[8] Ali, KK; Yilmazer, R.; Baskonus, HM; Bulut, H., Modulation instability analysis and analytical solutions to the system of equations for the ion sound and Langmuir waves, Phys. Scr., 95, 065602 (2020) · doi:10.1088/1402-4896/ab81bf
[9] Tripathy, A.; Sahoo, S., Exact solutions for the ion sound Langmuir wave model by using two novel analytical method, Results Phys., 19, 103494 (2020) · doi:10.1016/j.rinp.2020.103494
[10] Tahir, M.; Awan, A., Optical singular and dark solitons with Biswas-Arshed model by modified simple equation method, Optik, 202, 163523 (2020) · doi:10.1016/j.ijleo.2019.163523
[11] Mahak, N.; Akram, G., The modified auxiliary equation method to investigate solutions of the perturbed nonlinear Schrödinger equation with kerr law nonlinearity, Optik, 207, 164467 (2020) · doi:10.1016/j.ijleo.2020.164467
[12] Akram, G.; Zainab, I., Dark peakon, kink and periodic solutions of the nonlinear Biswas-Milovic equation with kerr law nonlinearity, Optik, 208, 164420 (2020) · doi:10.1016/j.ijleo.2020.164420
[13] Rehman, H.; Ullah, N.; Imran, M., Optical solitons of Biswas-Arshed equation in birefringent fibers using extended direct algebraic method, Optik, 226, 165378 (2021) · doi:10.1016/j.ijleo.2020.165378
[14] Zayed, EME; Alngar, MEM, Optical solitons in birefringent fibers with Biswas-Arshed model by generalized Jacobi elliptic function expansion method, Optik, 203, 163922 (2020) · doi:10.1016/j.ijleo.2019.163922
[15] Yıldırım, Y., Optical solitons with Biswas-Arshed equation by F-expansion method, Optik, 227, 165788 (2021) · doi:10.1016/j.ijleo.2020.165788
[16] Pandir, Y., Turhan, N.: Multiple Soliton Solutions for Nonlinear Differential Equations with a New Version of Extended F-Expansion Method. Proc. Nati. Acad. Sci. India. Sect. A Phys, Sci (2020). doi:10.1007/s40010-020-00687-9 · Zbl 1490.35096
[17] Kong, Y.; Xin, L.; Qiu, Q.; Han, L., Exact periodic wave solutions for the modified Zakharov equations with a quantum correction, Appl. Math. Lett., 94, 140-148 (2019) · Zbl 1412.81140 · doi:10.1016/j.aml.2019.01.009
[18] Lu, D.; Seadawy, AR; Ali, A., Dispersive traveling wave solutions of the Equal-Width and Modified Equal-Width equations via mathemathical methods and its applications, Results Phys., 9, 313-320 (2018) · doi:10.1016/j.rinp.2018.02.036
[19] Özkan, YS; Yasar, E.; Seadawy, AR, A third-order nonlinear Schrödinger equation:the exact solutions, group-invariant solutions and conservation laws, J. Taibah Univ. Sci., 14, 585-597 (2020) · doi:10.1080/16583655.2020.1760513
[20] Cheemaa, N.; Chen, S.; Seadawy, AR, Propagation of isolated waves of coupled nonlinear (2+1)-dimensional Maccari System in plasma physics, Results Phys., 17, 102987 (2020) · doi:10.1016/j.rinp.2020.102987
[21] Seadawy, AR; Cheemaa, N., Propagation of nonlinear complex waves for the coupled nonlinear Schrödinger Equations in two core optical fibers, Physica A, 529, 121330 (2019) · Zbl 07568570 · doi:10.1016/j.physa.2019.121330
[22] Cheemaa, N.; Seadawy, AR; Chen, S., More general families of exact solitary wave solutions of the nonlinear Schrödinger equation with their applications in nonlinear optics, Eur. Phys. J. Plus, 133, 547 (2018) · doi:10.1140/epjp/i2018-12354-9
[23] Liu, HZ; Sun, XQ; Chen, LJ, Comment on: An observation on the periodic solutions to nonlinear physical models by means of the auxiliary equation with a sixth-degree nonlinear term, Commun Nonlinear Sci Numer Simulat, 18, 2177-2187 (2013) · Zbl 1277.35101 · doi:10.1016/j.cnsns.2012.12.025
[24] Liu, HZ; Sun, XQ; Chen, LJ, Comment on: “An observation on the periodic solutions to nonlinear physical models by means of the auxiliary equation with a sixth-degree nonlinear term”, Commun. Nonlinear Sci. Numer. Simul., 19, 2553-2557 (2014) · Zbl 1457.35011 · doi:10.1016/j.cnsns.2013.11.018
[25] Liu, HZ; Zhu, GQ, Comment on the solitons and periodic travelling wave solutions for Dodd-Bullough-Mikhailov and Tzitzeica-Dodd-Bullough equations in quantum field theory, Optik, 168, 807-816 (2018) · doi:10.1016/j.ijleo.2018.05.001
[26] Liu, H.Z., Zhu, G.Q.: Comment on “the solitons and periodic travelling wave solutions for Dodd-Bullough-Mikhailov and Tzitzeica-Dodd-Bullough equations in quantum field theory, Optik 203, 163870 (‘). doi:10.1016/j.ijleo.2019.163870
[27] Liu, CS, Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations, Comput. Phys. Commun., 181, 317-324 (2010) · Zbl 1205.35262 · doi:10.1016/j.cpc.2009.10.006
[28] Wang, ZX; Guo, DR, Special Functions Generality (2000), Beijing: Peking University Press, Beijing
[29] Abramowitz, M.; Stegun, IA, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (1972), New York: Dover Publications, New York · Zbl 0543.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.