×

Finite time stabilization of nonautonomous first-order hyperbolic systems. (English) Zbl 1473.35046

Summary: We address nonautonomous initial boundary value problems for decoupled linear first-order one-dimensional hyperbolic systems and investigate the phenomenon of finite time stabilization. We establish sufficient and necessary conditions ensuring that solutions stabilize to zero in a finite time for any initial \(L^2\)-data. In the nonautonomous case we give a combinatorial criterion stating that robust stabilization occurs if and only if the matrix of reflection boundary coefficients corresponds to a directed acyclic graph. An equivalent robust algebraic criterion is that the adjacency matrix of this graph is nilpotent. In the autonomous case we also provide a spectral stabilization criterion, which is nonrobust with respect to perturbations of the coefficients of the hyperbolic system.

MSC:

35B40 Asymptotic behavior of solutions to PDEs
35L50 Initial-boundary value problems for first-order hyperbolic systems
93D20 Asymptotic stability in control theory
93D40 Finite-time stability
37L15 Stability problems for infinite-dimensional dissipative dynamical systems

References:

[1] A. Balakrishnan, Superstability of systems, Appl. Math. Comput., 164 (2005), pp. 321-326, https://doi.org/10.1016/j.amc.2004.06.052. · Zbl 1123.93315
[2] G. Bastin and J.-M. Coron, Stability and Boundary Stabilization of \textup1-D Hyperbolic Systems, Progr. Nonlinear Differential Equations Appl. 88, Birkhäuser/Springer, Basel, 2016. · Zbl 1377.35001
[3] S. P. Bhat and D. S. Bernstein, Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38 (2000), pp. 751-766, https://doi.org/10.1137/S0363012997321358. · Zbl 0945.34039
[4] Y. Chitour, G. Mazanti, and M. Sigalotti, Stability of non-autonomous difference equations with applications to transport and wave propagation on networks, Netw. Heterog. Media, 11 (2016), pp. 563-601, https://doi.org/10.3934/nhm.2016010. · Zbl 1388.39008
[5] J.-M. Coron and G. Bastin, Dissipative boundary conditions for one-dimensional quasi-linear hyperbolic systems: Lyapunov stability for the \(C^1\)-norm, SIAM J. Control Optim., 53 (2015), pp. 1464-1483, https://doi.org/10.1137/14097080X. · Zbl 1316.35179
[6] J.-M. Coron, G. Bastin, and B. D’Andréa-Novel, Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems, SIAM J. Control Optim., 47 (2008), pp. 1460-1498, https://doi.org/10.1137/070706847. · Zbl 1172.35008
[7] J.-M. Coron, L. Hu, G. Olive, and P. Shang, Boundary stabilization in finite time of one-dimensional linear hyperbolic balance laws with coefficients depending on time and space, J. Differential Equations, 271 (2021), pp. 1109-1170, https://doi.org/10.1016/j.jde.2020.09.037. · Zbl 1454.35234
[8] J.-M. Coron and H.-M. Nguyen, Dissipative boundary conditions for nonlinear 1-D hyperbolic systems: Sharp conditions through an approach via time-delay systems, SIAM J. Math. Anal., 47 (2015), pp. 2220-2240, https://doi.org/10.1137/140976625. · Zbl 1320.35196
[9] J.-M. Coron and H.-M. Nguyen, Optimal time for the controllability of linear hyperbolic systems in one-dimensional space, SIAM J. Control Optim., 57 (2019), pp. 1127-1156, https://doi.org/10.1137/18M1185600. · Zbl 1418.35259
[10] J.-M. Coron and H.-M. Nguyen, Finite-time stabilization in optimal time of homogeneous quasilinear hyperbolic systems in one dimensional space, ESAIM Control Optim. Calc. Var., 26 (2020), 119, https://doi.org/10.1051/cocv/2020061. · Zbl 1470.93137
[11] J.-M. Coron and H.-M. Nguyen, Null-controllability of linear hyperbolic systems in one dimensional space, Syst. Control Lett., 148 (2021), 104851, https://doi.org/10.1016/j.sysconle.2020.104851. · Zbl 1478.93052
[12] J.-M. Coron, R. Vazquez, M. Krstic, and G. Bastin, Local exponential \(H^2\) stabilization of a 2 x 2 quasilinear hyperbolic system using backstepping, SIAM J. Control Optim., 51 (2013), pp. 2005-2035, https://doi.org/10.1137/120875739. · Zbl 1408.35009
[13] B. Cox, S. Kara, S. Arridge, and P. Beard, \(k\)-space propagation models for acoustically heterogeneous media: Application to biomedical photoacoustics, J. Acoustical Soc. Amer., 121 (2007), pp. 3453-3464, https://doi.org/10.1121/1.2717409.
[14] D. Creutz, M. Mazo, Jr., and C. Preda, Superstability and Finite Time Extinction for \(C_0\)-Semigroups, preprint, https://arxiv.org/abs/0907.4812, 2013.
[15] N. Cristescu, Dynamic Plasticity, North-Holland, Amsterdam, 1967. · Zbl 0158.43604
[16] A. Diagne, G. Bastin, and J.-M. Coron, Lyapunov exponential stability of \textup1-D linear hyperbolic systems of balance laws, Automatica, 48 (2012), pp. 109-114, https://doi.org/10.1016/j.automatica.2011.09.030. · Zbl 1244.93143
[17] M. Eller, A remark on Littman’s method of boundary controllability, Evol. Equ. Control Theory, 2 (2013), pp. 621-630, https://doi.org/10.3934/eect.2013.2.621. · Zbl 1375.35585
[18] N. A. Ëltysheva, On qualitative properties of solutions of some hyperbolic systems in the plane, Math. USSR-Sb., 63 (1989), pp. 181-203, https://doi.org/10.1070/SM1989v063n01ABEH003267. · Zbl 0669.35071
[19] T. Floquet, J.-P. Barbot, and W. Perruquetti, Higher-order sliding mode stabilization for a class of nonholonomic perturbed systems, Automatica, 39 (2003), pp. 1077-1083, https://doi.org/10.1016/S0005-1098(03)00076-1. · Zbl 1038.93063
[20] J. Greenberg and L. Ta Tsien, The effect of boundary damping for the quasilinear wave equation, J. Differential Equations, 52 (1984), pp. 66-75, https://doi.org/10.1016/0022-0396(84)90135-9. · Zbl 0576.35080
[21] M. Gugat, Optimal Boundary Control and Boundary Stabilization of Hyperbolic Systems, SpringerBriefs in Control, Automation and Robotics, Birkhäuser, Cham, 2015, https://doi.org/10.1007/978-3-319-18890-4. · Zbl 1328.49001
[22] B. Guo and J. Wang, Control of Wave and Beam PDEs: The Riesz Basis Approach, Comm. Control Engrg., Springer, Cham, 2019. · Zbl 1426.35002
[23] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Appl. Math. Sci. 99, Springer-Verlag, New York, 1993. · Zbl 0787.34002
[24] F. Harary, Graph Theory, Addison-Wesley Ser. Math., Addison-Wesley Publishing Company, Reading, MA, 1969. · Zbl 0182.57702
[25] W. He, S. Ge, and S. Zhang, Adaptive boundary control of a flexible marine installation system, Automatica, 47 (2011), pp. 2728-2734, https://doi.org/10.1016/j.automatica.2011.09.025. · Zbl 1235.93135
[26] L. Hu, F. D. Meglio, R. Vazquez, and M. Krstic, Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs, IEEE Trans. Automat. Control, 61 (2016), pp. 3301-3314, https://doi.org/10.1109/TAC.2015.2512847. · Zbl 1359.93205
[27] L. Hu and G. Olive, Minimal Time for the Exact Controllability of One-Dimensional First-Order Linear Hyperbolic Systems by One-Sided Boundary Controls, preprint, https://arxiv.org/abs/1901.06005, 2019. · Zbl 1460.35223
[28] L. Kantorovich and G. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982. · Zbl 0484.46003
[29] I. Karafyllis and M. Krstic, Input-to-State Stability for PDEs, Comm. Control Engrg., Springer, Cham, 2019, https://doi.org/10.1007/978-3-319-91011-6. · Zbl 1416.93004
[30] T. Kato, Perturbation Theory for Linear Operators, Classics Math., Springer-Verlag, Berlin, 1995. · Zbl 0836.47009
[31] I. Kmit, Classical solvability of nonlinear initial-boundary problems for first-order hyperbolic systems, Int. J. Dyn. Syst. Differ. Equ., 1 (2008), pp. 191-195, https://doi.org/10.1504/IJDSDE.2008.019680. · Zbl 1160.35472
[32] I. Kmit, Smoothing solutions to initial-boundary problems for first-order hyperbolic systems, Appl. Anal., 90 (2011), pp. 1609-1634, https://doi.org/10.1080/00036811.2011.559462. · Zbl 1228.35077
[33] I. Kmit and N. Lyul’ko, Perturbations of superstable linear hyperbolic systems, J. Math. Anal. Appl., 460 (2018), pp. 838-862, https://doi.org/10.1016/j.jmaa.2017.12.030. · Zbl 1383.35119
[34] B. Y. Levin, Distribution of Zeros of Entire Functions, Transl. Math. Monogr. 5, American Mathematical Society (AMS), Providence, RI, 1964. · Zbl 0152.06703
[35] F. Lopez-Ramirez, D. Efimov, A. Polyakov, and W. Perruquetti, Conditions for fixed-time stability and stabilization of continuous autonomous systems, Syst. Control Lett., 129 (2019), pp. 26-35, https://doi.org/10.1016/j.sysconle.2019.05.003. · Zbl 1425.93218
[36] A. M. Lyapunov, The general problem of the stability of motion, Int. J. Control, 55 (1992), pp. 531-534, https://doi.org/10.1080/00207179208934253. · Zbl 0786.70001
[37] N. A. Lyul’ko, A mixed problem for a hyperbolic system on the plane with delay in the boundary conditions, Sib. Mat. J., 46 (2005), pp. 875-901, https://doi.org/10.1007/s11202-005-0086-y.
[38] N. Manganaro and G. Valenti, Group analysis and linearization procedure for a nonautonomous model describing rate-type materials, J. Math. Phys., 34 (1993), pp. 1360-1369, https://doi.org/10.1063/1.530215. · Zbl 0774.73030
[39] L. Pavel, Classical solutions in Sobolev spaces for a class of hyperbolic Lotka-Volterra systems, SIAM J. Control Optim., 51 (2013), pp. 2132-2151, https://doi.org/10.1137/090767303. · Zbl 1275.35138
[40] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer-Verlag, New York, 1983, https://doi.org/10.1007/978-1-4612-5561-1. · Zbl 0516.47023
[41] F. Räbiger and M. P. H. Wolff, Superstable semigroups of operators, Indag. Math. (N.S.), 6 (1995), pp. 481-494, https://doi.org/10.1016/0019-3577(96)81762-9. · Zbl 0849.47019
[42] D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions, SIAM Rev., 20 (1978), pp. 639-739, https://doi.org/10.1137/1020095. · Zbl 0397.93001
[43] H. Sachs, Beziehungen zwischen den in einem Graphen enthaltenen Kreisen und seinem charakteristischen Polynom, Publ. Math. Debrecen, 11 (1964), pp. 119-134. · Zbl 0137.18103
[44] M. Slemrod, Boundary feedback stabilization for a quasi-linear wave equation, in Control Theory for Distributed Parameter Systems and Applications, F. Kappel, K. Kunisch, and W. Schappacher, eds., Springer, Berlin, Heidelberg, 1983, pp. 221-237, https://doi.org/10.1007/BFb0043951. · Zbl 0531.93045
[45] P. Stefanov and G. Uhlmann, Thermoacoustic tomography with variable sound speed, Inverse Problems, 25 (2009), 075011, https://doi.org/10.1088/0266-5611/25/7/075011. · Zbl 1177.35256
[46] I. Tikhonov and V. N. S. Tung, The solvability of the inverse problem for the evolution equation with a superstable semigroup, RUDN J. MIP, 26 (2018), pp. 103-118, https://doi.org/10.22363/2312-9735-2018-26-2-103-118.
[47] F. E. Udwadia, Boundary control, quiet boundaries, super-stability and super-instability, Appl. Math. Comput., 164 (2005), pp. 327-349, https://doi.org/10.1016/j.amc.2004.06.040. · Zbl 1076.93023
[48] S. Vaidyanathan and C.-H. Lien, eds., Applications of Sliding Mode Control in Science and Engineering, Stud. Comput. Intell. 709, Springer, Cham, 2017, https://doi.org/10.1007/978-3-319-55598-0. · Zbl 1388.93002
[49] V. Vladimirov, Equations of Mathematical Physics, translated from the Russian by A. Littlewood, edited by A. Jeffrey, Pure Appl. Math. 3, Marcel Dekker, Inc., New York, 1971, https://books.google.de/books?id=oAfvAAAAIAAJ. · Zbl 0231.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.