×

Swampland geometry and the gauge couplings. (English) Zbl 1472.83032

Summary: The purpose of this paper is two-fold. First we review in detail the geometric aspects of the swampland program for supersymmetric 4d effective theories using a new and unifying language we dub “domestic geometry”, the generalization of special Kähler geometry which does not require the underlying manifold to be Kähler or have a complex structure. All 4d SUGRAs are described by domestic geometry. As special Kähler geometries, domestic geometries carry formal brane amplitudes: when the domestic geometry describes the supersymmetric low-energy limit of a consistent quantum theory of gravity, its formal brane amplitudes have the right properties to be actual branes. The main datum of the domestic geometry of a 4d SUGRA is its gauge coupling, seen as a map from a manifold which satisfies the geometric Ooguri-Vafa conjectures to the Siegel variety; to understand the properties of the quantum-consistent gauge couplings we discuss several novel aspects of such “Ooguri-Vafa” manifolds, including their Liouville properties. Our second goal is to present some novel speculation on the extension of the swampland program to non-supersymmetric effective theories of gravity. The idea is that the domestic geometric description of the quantum-consistent effective theories extends, possibly with some qualifications, also to the non-supersymmetric case.

MSC:

83C45 Quantization of the gravitational field
83E50 Supergravity

References:

[1] C. Vafa, The String landscape and the swampland, hep-th/0509212 [INSPIRE]. · Zbl 1117.81117
[2] Ooguri, H.; Vafa, C., On the Geometry of the String Landscape and the Swampland, Nucl. Phys. B, 766, 21 (2007) · Zbl 1117.81117 · doi:10.1016/j.nuclphysb.2006.10.033
[3] T.D. Brennan, F. Carta and C. Vafa, The String Landscape, the Swampland, and the Missing Corner, PoSTASI2017 (2017) 015 [arXiv:1711.00864] [INSPIRE].
[4] Palti, E., The Swampland: Introduction and Review, Fortsch. Phys., 67, 1900037 (2019) · Zbl 1527.83096 · doi:10.1002/prop.201900037
[5] Banks, T.; Seiberg, N., Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D, 83, 084019 (2011) · doi:10.1103/PhysRevD.83.084019
[6] H.-C. Kim, H.-C. Tarazi and C. Vafa, Four-dimensional \(\mathcal{N} = 4\) SYM theory and the swampland, Phys. Rev. D102 (2020) 026003 [arXiv:1912.06144] [INSPIRE].
[7] Cecotti, S., N = 2 Supergravity, Type IIB Superstrings and Algebraic Geometry, Commun. Math. Phys., 131, 517 (1990) · Zbl 0712.53045 · doi:10.1007/BF02098274
[8] Strominger, A., Special geometry, Commun. Math. Phys., 133, 163 (1990) · Zbl 0716.53068 · doi:10.1007/BF02096559
[9] Grimm, TW; Palti, E.; Valenzuela, I., Infinite Distances in Field Space and Massless Towers of States, JHEP, 08, 143 (2018) · Zbl 1396.81151 · doi:10.1007/JHEP08(2018)143
[10] Grimm, TW; Li, C.; Palti, E., Infinite Distance Networks in Field Space and Charge Orbits, JHEP, 03, 016 (2019) · Zbl 1414.81184 · doi:10.1007/JHEP03(2019)016
[11] Corvilain, P.; Grimm, TW; Valenzuela, I., The Swampland Distance Conjecture for Kähler moduli, JHEP, 08, 075 (2019) · Zbl 1421.83112 · doi:10.1007/JHEP08(2019)075
[12] Joshi, A.; Klemm, A., Swampland Distance Conjecture for One-Parameter Calabi-Yau Threefolds, JHEP, 08, 086 (2019) · Zbl 1421.83116 · doi:10.1007/JHEP08(2019)086
[13] Grimm, TW; van de Heisteeg, D., Infinite Distances and the Axion Weak Gravity Conjecture, JHEP, 03, 020 (2020) · Zbl 1435.83124 · doi:10.1007/JHEP03(2020)020
[14] Grimm, TW; Ruehle, F.; van de Heisteeg, D., Classifying Calabi-Yau Threefolds Using Infinite Distance Limits, Commun. Math. Phys., 382, 239 (2021) · Zbl 1477.14068 · doi:10.1007/s00220-021-03972-9
[15] Cecotti, S., Special Geometry and the Swampland, JHEP, 09, 147 (2020) · Zbl 1454.83157 · doi:10.1007/JHEP09(2020)147
[16] C. Lazaroiu and C.S. Shahbazi, The duality covariant geometry and DSZ quantization of Abelian gauge theory, arXiv:2101.07236 [INSPIRE].
[17] C.I. Lazaroiu and C.S. Shahbazi, The geometry and DSZ quantization of four-dimensional supergravity, arXiv:2101.07778 [INSPIRE].
[18] T.W. Grimm, Moduli Space Holography and the Finiteness of Flux Vacua, arXiv:2010.15838 [INSPIRE].
[19] Bastian, B.; Grimm, TW; van de Heisteeg, D., Weak gravity bounds in asymptotic string compactifications, JHEP, 06, 162 (2021) · Zbl 1466.83009 · doi:10.1007/JHEP06(2021)162
[20] Ooguri, H.; Vafa, C., Non-supersymmetric AdS and the Swampland, Adv. Theor. Math. Phys., 21, 1787 (2017) · Zbl 1471.83020 · doi:10.4310/ATMP.2017.v21.n7.a8
[21] N. Seiberg, The Power of holomorphy: Exact results in 4D SUSY field theories, in proceedings of the Particles, Strings, and Cosmology (PASCOS 94), Syracuse, NY, U.S.A., 19-24 May 1994, pp. 357-369 [hep-th/9408013] [INSPIRE].
[22] D.W. Morris, Introduction to Arithmetic Groups, math.DG/0106063. · Zbl 1319.22007
[23] Wang, C-L, On the incompleteness of the Weil-Petersson metric along degenerations of Calabi-Yau manifolds, Math. Res. Lett., 4, 157 (1997) · Zbl 0881.32017 · doi:10.4310/MRL.1997.v4.n1.a14
[24] Reid, M., The moduli space of 3-folds with K = 0 may nevertheless be irreducible, Math. Ann., 278, 329 (1987) · Zbl 0649.14021 · doi:10.1007/BF01458074
[25] Cecotti, S.; Vafa, C., Ising model and N = 2 supersymmetric theories, Commun. Math. Phys., 157, 139 (1993) · Zbl 0787.58008 · doi:10.1007/BF02098023
[26] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Holomorphic anomalies in topological field theories, in AMS/IP Studies in Advanced Mathematics1, American Mathematical Society, Providence RI U.S.A. (1996), pp. 655-682 [Nucl. Phys. B405 (1993) 279] [hep-th/9302103] [INSPIRE]. · Zbl 0919.58067
[27] Z. Lu, On the Hodge metric of the universal deformation space of Calabi-Yau threefolds, math.DG/0505582. · Zbl 0986.32010
[28] Cecotti, S., Moduli spaces of Calabi-Yau d-folds as gravitational-chiral instantons, JHEP, 12, 008 (2020) · Zbl 1457.83045 · doi:10.1007/JHEP12(2020)008
[29] X. Chen, K. Liu and Y. Shen, Global Torelli theorem for projective manifolds of Calabi-Yau type, arXiv:1205.4207v3.
[30] K. Liu and Y. Shen, Hodge metric completion of the moduli space of Calabi-Yau manifolds, arXiv:1305.0231. · Zbl 1387.32031
[31] K. Liu and Y. Shen, From local Torelli to global Torelli, arXiv:1512.08384.
[32] A.L. Besse, Einstein manifolds, in Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer (1987). · Zbl 0613.53001
[33] J.W. Morgan and G. Tian, Ricci Flow and the Poincaré Conjecture, math.DG/0607607. · Zbl 1179.57045
[34] Kehagias, A.; Lüst, D.; Lüst, S., Swampland, Gradient Flow and Infinite Distance, JHEP, 04, 170 (2020) · Zbl 1436.83063 · doi:10.1007/JHEP04(2020)170
[35] Trenner, T.; Wilson, PMH, Asymptotic curvature of moduli spaces of Calabi-Yau threefolds, J. Geom. Anal., 21, 409 (2011) · Zbl 1226.14055 · doi:10.1007/s12220-010-9152-1
[36] S. Cecotti, Supersymmetric Field Theories. Geometric Structures and Dualities, Cambridge University Press, Cambridge U.K. (2015) [doi:10.1017/CBO9781107284203]. · Zbl 1310.81003
[37] Yau, S-T, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry, Indiana Univ. Math. J., 25, 659 (1976) · Zbl 0335.53041 · doi:10.1512/iumj.1976.25.25051
[38] Calabi, E., On manifolds with non-negative Ricci curvature II, Notices Am. Math. Soc., 22, A205 (1975)
[39] W. Ballmann, M. Gromov and V. Schroeder, Manifolds of Nonpositive Curvature, in Progress in Mathematics61, Springer (1985). · Zbl 0591.53001
[40] W. Ballmann, Lectures on Spaces of Nonpositive Curvature, in DMV Seminars25, Birkhäuser Basel (1995). · Zbl 0834.53003
[41] Borel, A., Density and maximality of arithmetic subgroups, J. Reine Angew. Math., 244, 78 (1966) · Zbl 0158.03105 · doi:10.1515/crll.1966.224.78
[42] N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B426 (1994) 19 [Erratum ibid.430 (1994) 485] [hep-th/9407087] [INSPIRE]. · Zbl 0996.81511
[43] Seiberg, N.; Witten, E., Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B, 431, 484 (1994) · Zbl 1020.81911 · doi:10.1016/0550-3213(94)90214-3
[44] Baily, W.; Borel, A., Compactification of arithmetic quotients of bounded symmetric domains, Ann. Math., 84, 442 (1966) · Zbl 0154.08602 · doi:10.2307/1970457
[45] A. Borel and L. Ji, Compactifications of Symmetric and Locally Symmetric Spaces, in Mathematics: Theory & Applications, Birkäuser (2006). · Zbl 1100.22001
[46] J.S. Milne, Shimura Varieties and Moduli, arXiv:1105.0887 and online at https://www.jmilne.org/math. · Zbl 1322.14012
[47] J.S. Milne, Shimura Varieties and Motives, in Proceedings of Symposia in Pure Mathematics55.2, American Mathematical Society, Providence RI U.S.A. (1994), pp. 447-523 and online at https://www.jmilne.org/math. · Zbl 0816.14022
[48] Y. Namikawa, Toroidal compactification of Siegel spaces, in Lecture Notes in Mathematics812, Springer, Berlin Germany (1980). · Zbl 0466.14011
[49] C.-L. Chai, Compactification of Siegel moduli schemes, in London Mathematical Society Lecture Note Series107, Cambridge University Press, Cambridge U.K. (1985). · Zbl 0578.14009
[50] S.-T. Yau and Y. Zhang, The geometry on smooth toroidal compactifications of Siegel varieties, arXiv:1201.3785. · Zbl 1307.14066
[51] S. Cecotti and C. Vafa, Theta-problem and the String Swampland, arXiv:1808.03483 [INSPIRE]. · Zbl 0787.58008
[52] Vafa, C., Evidence for F-theory, Nucl. Phys. B, 469, 403 (1996) · Zbl 1003.81531 · doi:10.1016/0550-3213(96)00172-1
[53] C. Soulé, An introduction to arithmetic groups, math.GR/0403390. · Zbl 1193.11036
[54] Macdonald, IG, The volume of a compact Lie group, Inven. Math., 56, 93 (1980) · Zbl 0426.22009 · doi:10.1007/BF01392542
[55] R.P. Langlands, The volume of the fundamental domain for some arithmetical subgroups of Chevalley groups, in Algebraic Groups and Discontinuous Subgroups, Proceedings of Symposia in Pure Mathematics9, American Mathematical Society, Providence RI U.S.A. (1966), pp. 235-257. · Zbl 0218.20041
[56] P. Griffiths, Topics in Transcendental Algebraic Geometry, in Annals of Mathematics Studies, Princeton University Press, Princeton NJ U.S.A. (1984). · Zbl 0528.00004
[57] P. Deligne, Travaux de Griffiths, in Séminaire Bourbaki vol. 1969/70 Exposés 364-381, Lecture Notes in Mathematics180, Springer (1970).
[58] J. Carlson, S. Müller-Stach and C. Peters, Period Mappings and Period Domains, second edition, in Cambridge Studies in Advanced Mathematics168, Cambridge University Press, Cambridge U.K. (2017).
[59] P. Griffiths, Mumford-Tate groups, (2010) and online pdf version at https://publications.ias.edu/sites/default/files/Trieste.pdf.
[60] M. Green, P. Griffiths and M. Kerr, Mumford-Tate domains, Boll. Unione Mat. Ital.3 (2010) 281 and online pdf version at https://www.math.wustl.edu/∼matkerr/MTD.pdf. · Zbl 1208.14008
[61] M. Green, P. Griffiths and M. Kerr, Mumford-Tate Groups and Domains: Their Geometry and Arithmetic, in Annals of Mathematics Studies, Princeton University Press, Princeton NJ U.S.A. (2012). · Zbl 1248.14001
[62] Cecotti, S.; Vafa, C., Topological antitopological fusion, Nucl. Phys. B, 367, 359 (1991) · Zbl 1136.81403 · doi:10.1016/0550-3213(91)90021-O
[63] Cecotti, S., Geometry of N = 2 Landau-Ginzburg families, Nucl. Phys. B, 355, 755 (1991) · doi:10.1016/0550-3213(91)90493-H
[64] Cecotti, S.; Vafa, C., On classification of N = 2 supersymmetric theories, Commun. Math. Phys., 158, 569 (1993) · Zbl 0787.58049 · doi:10.1007/BF02096804
[65] Dubrovin, B., Geometry and integrability of topological-antitopological fusion, Commun. Math. Phys., 152, 539 (1993) · Zbl 0771.53042 · doi:10.1007/BF02096618
[66] F. Hélein and J.C. Wood, Harmonic maps: Dedicated to the memory of James Eells, in Handbook of Global Analysis, D. Krupka and D. Saunders eds., Elsevier Science (2007), pp. 417-491. · Zbl 1236.58002
[67] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, in Pure and Applied Mathematics80, Academic Press, New York NY U.S.A. (1978). · Zbl 0451.53038
[68] Simpson, CT, Higgs bundles and local systems, Publ. Math. IHÉS, 75, 5 (1992) · Zbl 0814.32003 · doi:10.1007/BF02699491
[69] Corlette, K., Archimedean superrigidity and hyperbolic geometry, Ann. Math., 135, 165 (1992) · Zbl 0768.53025 · doi:10.2307/2946567
[70] Carlson, JA; Toledo, D., Harmonic mappings of Kähler manifolds to locally symmetric spaces, Publ. Math. IHÉS, 69, 173 (1989) · Zbl 0695.58010 · doi:10.1007/BF02698844
[71] J.H. Sampson, Applications of harmonic maps to Kähler geometry, in Contemporary Mathematics49, American Mathematical Society, Providence RI U.S.A. (1986), pp. 125-134. · Zbl 0605.58019
[72] Lerche, W.; Vafa, C.; Warner, NP, Chiral Rings in N = 2 Superconformal Theories, Nucl. Phys. B, 324, 427 (1989) · doi:10.1016/0550-3213(89)90474-4
[73] A. Skowroński, Periodicity in representation theory of algebras, (2006) and online pdf version at https://webusers.imj-prg.fr/∼bernhard.keller/ictp2006/lecturenotes/skowronski.pdf.
[74] K. Hori, A. Iqbal and C. Vafa, D-branes and mirror symmetry, hep-th/0005247 [INSPIRE].
[75] Griffiths, P.; Schmid, W., Locally homogeneous complex manifolds, Acta Math., 123, 253 (1969) · Zbl 0209.25701 · doi:10.1007/BF02392390
[76] Sen, A., Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP, 09, 038 (2005) · doi:10.1088/1126-6708/2005/09/038
[77] Sen, A., Entropy function for heterotic black holes, JHEP, 03, 008 (2006) · Zbl 1226.83037 · doi:10.1088/1126-6708/2006/03/008
[78] Sen, A., Black Hole Entropy Function, Attractors and Precision Counting of Microstates, Gen. Rel. Grav., 40, 2249 (2008) · Zbl 1153.83007 · doi:10.1007/s10714-008-0626-4
[79] Schmid, W., Variation of Hodge Structure: the singularities of the period mapping, Inv. Math., 22, 211 (1973) · Zbl 0278.14003 · doi:10.1007/BF01389674
[80] S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D52 (1995) R5412(R) [hep-th/9508072] [INSPIRE].
[81] Strominger, A., Macroscopic entropy of N = 2 extremal black holes, Phys. Lett. B, 383, 39 (1996) · doi:10.1016/0370-2693(96)00711-3
[82] Ferrara, S.; Kallosh, R., Supersymmetry and attractors, Phys. Rev. D, 54, 1514 (1996) · Zbl 1171.83329 · doi:10.1103/PhysRevD.54.1514
[83] G.W. Moore, Arithmetic and attractors, hep-th/9807087 [INSPIRE].
[84] Ooguri, H.; Strominger, A.; Vafa, C., Black hole attractors and the topological string, Phys. Rev. D, 70, 106007 (2004) · doi:10.1103/PhysRevD.70.106007
[85] Goldstein, K.; Iizuka, N.; Jena, RP; Trivedi, SP, Non-supersymmetric attractors, Phys. Rev. D, 72, 124021 (2005) · doi:10.1103/PhysRevD.72.124021
[86] de Boer, J.; Manschot, J.; Papadodimas, K.; Verlinde, E., The Chiral ring of AdS_3/CFT_2and the attractor mechanism, JHEP, 03, 030 (2009) · doi:10.1088/1126-6708/2009/03/030
[87] Eells, J.; Sampson, J., Harmonic mappings of Riemannian manifolds, Am. J. Math., 86, 109 (1964) · Zbl 0122.40102 · doi:10.2307/2373037
[88] Corlette, K., Flat G-bundles with canonical metrics, J. Diff. Geom., 28, 361 (1988) · Zbl 0676.58007
[89] Gottlieb, DH, Covering transformations and universal fibrations, Illinois J. Math., 13, 432 (1969) · Zbl 0169.54803 · doi:10.1215/ijm/1334250805
[90] Hansen, VL, On a theorem of Al’ber on spaces of maps, J. Diff. Geom., 12, 565 (1977) · Zbl 0402.58003
[91] J. Jöst, Riemannian Geometry and Geometric Analysis, seventh edition, in Universitext, Springer International Publishing (2017). · Zbl 1380.53001
[92] S.I. Al’ber, Spaces of mappings into a manifold with negative curvature, Dokl. Akad. Nauk SSSR178 (1968) 13 [Soviet Math. Dokl.9 (1968) 6]. · Zbl 0165.55704
[93] Al’ber, SI, The topology of functional manifolds and the calculus of variations in the large, Russ. Math. Surv., 25, 51 (1970) · Zbl 0222.58002 · doi:10.1070/RM1970v025n04ABEH001261
[94] Gaiotto, D.; Moore, GW; Neitzke, A., Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys., 299, 163 (2010) · Zbl 1225.81135 · doi:10.1007/s00220-010-1071-2
[95] Closset, C.; Dumitrescu, TT; Festuccia, G.; Komargodski, Z., The Geometry of Supersymmetric Partition Functions, JHEP, 01, 124 (2014) · Zbl 1333.81165 · doi:10.1007/JHEP01(2014)124
[96] J.S. Milne, Algebraic Groups. The theory of group schemes of finite type over a field, Cambridge University Press, Cambridge U.K. (2017) [doi:10.1017/9781316711736]. · Zbl 1390.14004
[97] Hatcher, A., Algebraic topology (2002), Cambridge U.K.: Cambridge University Press, Cambridge U.K. · Zbl 1044.55001
[98] Palti, E.; Vafa, C.; Weigand, T., Supersymmetric Protection and the Swampland, JHEP, 06, 168 (2020) · Zbl 1437.81100 · doi:10.1007/JHEP06(2020)168
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.