×

Coherent electronic transport in periodic crystals. (English) Zbl 1472.82034

Summary: We consider independent electrons in a periodic crystal in their ground state, and turn on a uniform electric field at some prescribed time. We rigorously define the current per unit volume and study its properties using both linear response and adiabatic theory. Our results provide a unified framework for various phenomena such as the quantization of Hall conductivity of insulators with broken time-reversibility, the ballistic regime of electrons in metals, Bloch oscillations in the long-time response of metals, and the static conductivity of graphene. We identify explicitly the regime in which each holds.

MSC:

82C70 Transport processes in time-dependent statistical mechanics
82D25 Statistical mechanics of crystals
81V70 Many-body theory; quantum Hall effect
82C35 Irreversible thermodynamics, including Onsager-Machlup theory
82D35 Statistical mechanics of metals
82D80 Statistical mechanics of nanostructures and nanoparticles

References:

[1] Bachmann, S.; De Roeck, W.; Fraas, M., The adiabatic theorem and linear response theory for extended quantum systems, Commun. Math. Phys., 361, 3, 997-1027 (2018) · Zbl 1473.81080 · doi:10.1007/s00220-018-3117-9
[2] Bellissard, J.: Coherent and dissipative transport in aperiodic solids: an overview. In: Dynamics of Dissipation, pp. 413-485. Springer (2002) · Zbl 1283.82008
[3] Bellissard, J.; van Elst, A.; Schulz-Baldes, H., The noncommutative geometry of the quantum Hall effect, J. Math. Phys., 35, 10, 5373-5451 (1994) · Zbl 0824.46086 · doi:10.1063/1.530758
[4] Bohm, D., Note on a theorem of bloch concerning possible causes of superconductivity, Phys. Rev., 75, 3, 502 (1949) · Zbl 0032.37803 · doi:10.1103/PhysRev.75.502
[5] Bouclet, J-M; Germinet, F.; Klein, A.; Schenker, JH, Linear response theory for magnetic Schrödinger operators in disordered media, J. Funct. Anal., 226, 2, 301-372 (2005) · Zbl 1088.82013 · doi:10.1016/j.jfa.2005.02.002
[6] Cancès, E., Ehrlacher, V., Gontier, D., Levitt, A., Lombardi, D.: Numerical quadrature in the Brillouin zone for periodic Schrödinger operators. Numerische Mathematik (in press) · Zbl 07178535
[7] Cornwell, JF, Group Theory in Physics (1984), Cambridge: Academic Press, Cambridge · Zbl 0557.20001
[8] Das Sarma, S.; Adam, S.; Hwang, EH; Rossi, E., Electronic transport in two-dimensional graphene, Rev. Mod. Phys., 83, 407-470 (2011) · doi:10.1103/RevModPhys.83.407
[9] De Nittis, G., Lein, M.: Linear Response Theory—An Analytic-Algebraic Approach. Springer Briefs in Mathematical Physics, vol. 21. Springer, New York (2017) · Zbl 1365.82002
[10] Fefferman, C.; Weinstein, M., Honeycomb lattice potentials and Dirac points, J. Am. Math. Soc., 25, 4, 1169-1220 (2012) · Zbl 1316.35214 · doi:10.1090/S0894-0347-2012-00745-0
[11] Fermanian Kammerer, C.; Clotilde, GP, Mesures semi-classiques et croisements de mode, Bulletin de la SMF, 130, 123-168 (2002) · Zbl 0996.35004
[12] Fermanian Kammerer, C.; Clotilde, LC, Single switch surface hopping for molecular dynamics with transitions, J. Chem. Phys., 128, 102-144 (2008) · doi:10.1063/1.2888549
[13] Fermanian Kammerer, C.; Clotilde, LC, An Egorov theorem for avoided crossings of eigenvalue surfaces, Commun. Math. Phys., 353, 3, 1011-1057 (2017) · Zbl 1375.35428 · doi:10.1007/s00220-017-2890-1
[14] Fermanian Kammerer, C.; Clotilde, MF, A kinetic model for the transport of electrons in a graphene layer, J. Comput. Phys., 327, 450-483 (2016) · Zbl 1373.81432 · doi:10.1016/j.jcp.2016.09.010
[15] Fiorenza, D.; Monaco, D.; Panati, G., \( \mathbb{Z}_2\) invariants of topological insulators as geometric obstructions, Commun. Math. Phys., 343, 3, 1115-1157 (2016) · Zbl 1346.81158 · doi:10.1007/s00220-015-2552-0
[16] Freund, S.; Teufel, S., Peierls substitution for magnetic Bloch bands, Anal. PDE, 9, 4, 773-811 (2016) · Zbl 1343.81088 · doi:10.2140/apde.2016.9.773
[17] Gall, D., Electron mean free path in elemental metals, J. Appl. Phys., 119, 8, 085101 (2016) · doi:10.1063/1.4942216
[18] Giuliani, A.; Mastropietro, V.; Porta, M., Universality of conductivity in interacting graphene, Commun. Math. Phys., 311, 2, 317-355 (2012) · Zbl 1250.82017 · doi:10.1007/s00220-012-1444-9
[19] Hagedorn, GA, Molecular propagation through electron energy level crossings, Memoirs AMS, 111, 536 (1994) · Zbl 0833.92025 · doi:10.1090/memo/0536
[20] Haldane, F.; Duncan, M., Model for a quantum Hall effect without landau levels: condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett., 61, 18, 2015 (1988) · doi:10.1103/PhysRevLett.61.2015
[21] Kato, T., Perturbation Theory for Linear Operators (1966), Berlin: Springer, Berlin · Zbl 0148.12601 · doi:10.1007/978-3-642-53393-8
[22] Kubo, R.: Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Japan 12(6), 570-586 (1957)
[23] Kuchment, P.: An overview of periodic elliptic operators. Bull. Am. Math. Soc. (N.S.) 53(3), 343-414 (2016) · Zbl 1346.35170
[24] Leinfelder, H.; Simader, CG, Schrödinger operators with singular magnetic vector potentials, Math. Z., 176, 1, 1-19 (1981) · Zbl 0468.35038 · doi:10.1007/BF01258900
[25] Leo, K.; Bolivar, PH; Brüggemann, F.; Schwedler, RKK, Observation of Bloch oscillations in a semiconductor superlattice, Solid State Commun., 84, 10, 943-946 (1992) · doi:10.1016/0038-1098(92)90798-E
[26] Marcelli, G., Panati, G., Tauber, C.: Spin conductance and spin conductivity in topological insulators: analysis of Kubo-like terms. Annales Henri Poincaré (2019) · Zbl 1493.82005
[27] Monaco, D.; Panati, G.; Pisante, A.; Teufel, S., Optimal decay of Wannier functions in Chern and quantum Hall insulators, Commun. Math. Phys., 359, 1, 61-100 (2018) · Zbl 1400.82249 · doi:10.1007/s00220-017-3067-7
[28] Monaco, D.; Teufel, S., Adiabatic currents for interacting electrons on a lattice (2017), Phys: Rev. Math, Phys · Zbl 1410.81037
[29] Panati, G., Triviality of Bloch and Bloch-Dirac bundles, Ann. Henri Poincaré, 8, 5, 995-1011 (2007) · Zbl 1375.81102 · doi:10.1007/s00023-007-0326-8
[30] Panati, G.; Spohn, H.; Teufel, S., Effective dynamics for Bloch electrons: Peierls substitution and beyond, Commun. Math. Phys., 242, 3, 547-578 (2003) · Zbl 1058.81020 · doi:10.1007/s00220-003-0950-1
[31] Rackauckas, C., Nie, Q.: DifferentialEquations.jl—a performant and feature-rich ecosystem for solving differential equations in Julia. J. Open Res. Softw. 5(1) (2017)
[32] Reed, M.C., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-adjointness. Academic Press, New York (1975) · Zbl 0308.47002
[33] Reed, MC; Barry, S., Methods of Modern Mathematical Physics (1978), New York: IV. Analysis of operators. Academic Press, New York · Zbl 0401.47001
[34] Simon, B., Holonomy, the quantum adiabatic theorem, and Berry’s phase, Phys. Rev. Lett., 51, 24, 2167 (1983) · doi:10.1103/PhysRevLett.51.2167
[35] Stiepan, HM; Teufel, S., Semiclassical approximations for hamiltonians with operator-valued symbols, Commun. Math. Phys., 320, 3, 821-849 (2013) · Zbl 1268.81079 · doi:10.1007/s00220-012-1650-5
[36] Teufel, S., Adiabatic Perturbation Theory in Quantum Dynamics (2003), Springer, Berlin: Lecture Notes in Mathematics, Springer, Berlin · Zbl 1053.81003 · doi:10.1007/b13355
[37] Teufel, S.: Non-equilibrium almost-stationary states and linear response for gapped quantum systems. Commun. Math. Phys (2019) · Zbl 1434.82052
[38] Thouless, DJ; Kohmoto, M.; Nightingale, MP; den Nijs, M., Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett., 49, 6, 405 (1982) · doi:10.1103/PhysRevLett.49.405
[39] Van Kampen, NG, Case against linear response theory, Physica Norvegica, 5, 3-4, 279-284 (1971)
[40] Van Vliet, CM, On van kampen’s objections against linear response theory, J. Stat. Phys., 53, 1-2, 49-60 (1988) · doi:10.1007/BF01011544
[41] Wilcox, CH, Theory of Bloch waves, J. Anal. Math., 33, 146-167 (1978) · Zbl 0408.35067 · doi:10.1007/BF02790171
[42] Zak, J., Magnetic translation group, Phys. Rev., 2, 134, A1602-A1606 (1964) · Zbl 0131.45404 · doi:10.1103/PhysRev.134.A1602
[43] Zener, C., A theory of the electrical breakdown of solid dielectrics, Proc. R. Soc. Lond. Ser. A, 145, 855, 523-529 (1934) · Zbl 0009.27605 · doi:10.1098/rspa.1934.0116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.