×

Towards an axiomatic formulation of noncommutative quantum field theory. II. (English) Zbl 1472.81247

Summary: Classical results of the axiomatic quantum field theory – irreducibility of the set of field operators, Reeh and Schlieder’s theorems and generalized Haag’s theorem are proven in \(SO(1, 1)\) invariant quantum field theory, of which an important example is noncommutative quantum field theory. In \(SO(1, 3)\) invariant theory new consequences of generalized Haag’s theorem are obtained. It has been proven that the equality of four-point Wightman functions in two theories leads to the equality of elastic scattering amplitudes and thus the total cross-sections in these theories.
For Part I, see [the first author et al., J. Math. Phys. 52, No. 3, 032303, 13 p. (2011; Zbl 1315.81096)].

MSC:

81T75 Noncommutative geometry methods in quantum field theory
81T05 Axiomatic quantum field theory; operator algebras
53D55 Deformation quantization, star products
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
46L05 General theory of \(C^*\)-algebras
81U05 \(2\)-body potential quantum scattering theory

Citations:

Zbl 1315.81096

References:

[1] Streater, R. F.; Wightman, A. S., PCT, Spin and Statistics and All That (1964), Benjamin: Benjamin New York · Zbl 0135.44305
[2] Jost, R., The General Theory of Quantum Fields (1965), Amer. Math. Soc.: Amer. Math. Soc. Providence, R.I. · Zbl 0127.19105
[3] Bogoliubov, N. N.; Logunov, A. A.; Todorov, I. T., Introduction to Axiomatic Quantum Field Theory (1975), Benjamin: Benjamin Reading, Mass · Zbl 1114.81300
[4] Bogoliubov, N. N.; Logunov, A. A.; Oksak, A. I.; Todorov, I. T., General Principles of Quantum Field Theory (1990), Kluwer: Kluwer Dordrecht · Zbl 0732.46040
[5] Haag, R., Local Quantum Physics (1996), Springer: Springer Berlin · Zbl 0857.46057
[6] Douglas, M. R.; Nekrasov, N. A., Noncommutative field theory, Rev. Mod. Phys., 73, 977 (2001) · Zbl 1205.81126
[7] Szabo, R. J., Quantum field theory on noncommutative spaces, Phys. Rep., 378, 207 (2003) · Zbl 1042.81581
[8] Snyder, H. S., Quantized space-time, Phys. Rev., 71, 38 (1947) · Zbl 0035.13101
[9] Connes, A., Noncommutative Geometry (1994), Academic Press: Academic Press New York · Zbl 1106.58004
[10] Doplicher, S.; Fredenhagen, K.; Roberts, J. E., Spacetime quantization induced by classical gravity, Phys. Lett. B, 331, 39 (1994); The quantum structure of spacetime at the Planck scale and quantum fields, Commun. Math. Phys., 172, 187 (1995) · Zbl 0847.53051
[11] Seiberg, N.; Witten, E., String theory and noncommutative geometry, J. High Energy Phys., 09, Article 032 pp. (1999) · Zbl 0957.81085
[12] Gomis, J.; Mehen, T., Space-time noncommutative field theories and unitarity, Nucl. Phys. B, 591, 265 (2000) · Zbl 0991.81120
[13] Seiberg, N.; Susskind, L.; Toumbas, N., Space/time non-commutativity and causality, J. High Energy Phys., 06, Article 044 pp. (2000) · Zbl 0989.81607
[14] Álvarez-Gaumé, L.; Barbon, J. L.F., Non-linear vacuum phenomena in non-commutative QED, Int. J. Mod. Phys. A, 16, 1123 (2001) · Zbl 0990.81147
[15] Chaichian, M.; Nishijima, K.; Tureanu, A., Spin-statistics and CPT theorems in noncommutative field theory, Phys. Lett. B, 568, 146 (2003) · Zbl 1051.81049
[16] Álvarez-Gaumé, L.; Barbon, J. L.F.; Zwicky, R., Remarks on time-space noncommutative field theories, J. High Energy Phys., 05, Article 057 pp. (2001)
[17] Fujikawa, K., Path integral for space-time noncommutative field theory, Phys. Rev. D, 70, Article 085006 pp. (2004)
[18] Chaichian, M.; Kulish, P. P.; Nishijima, K.; Tureanu, A., On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT, Phys. Lett. B, 604, 98 (2004) · Zbl 1247.81518
[19] Chaichian, M.; Prešnajder, P.; Tureanu, A., New concept of relativistic invariance in NC space-time: twisted Poincare symmetry and its implications, Phys. Rev. Lett., 94, Article 151602 pp. (2005)
[20] Balachandran, A. P.; Pinzul, A.; Qureshi, B. A., Twisted Poincare invariant quantum field theories, Phys. Rev. D, 77, Article 025021 pp. (2008)
[21] Balachandran, A. P.; Martone, M., Twisted quantum fields on Moyal and Wick-Voros planes are inequivalent, Mod. Phys. Lett. A, 24, 1721 (2009) · Zbl 1176.81127
[22] Balachandran, A. P.; Ibort, A.; Marmo, G.; Martone, M., Covariant quantum fields on noncommutative spacetimes, J. High Energy Phys., 1103, Article 057 pp. (2011) · Zbl 1301.81268
[23] Álvarez-Gaumé, L.; Vázquez-Mozo, M. A., General properties of noncommutative field theories, Nucl. Phys. B, 668, 293 (2003) · Zbl 1031.81062
[24] Chaichian, M.; Mnatsakanova, M. N.; Nishijima, K.; Tureanu, A.; Vernov, Yu. S., Towards an axiomatic formulation of noncommutative quantum field theory, J. Math. Phys., 52, 3, Article 032303 pp. (2011) · Zbl 1315.81096
[25] Akofor, E.; Balachandran, A. P.; Jo, S. G.; Joseph, A., Quantum fields on the Groenewold-Moyal plane: C, P, T and CPT, J. High Energy Phys., 0708, Article 045 pp. (2007) · Zbl 1326.81103
[26] Balachandran, A. P.; Mangano, G.; Pinzul, A.; Vaidya, S., Spin and statistics on the Groenewold-Moyal plane: Pauli-Forbidden levels and transitions, Int. J. Mod. Phys. A, 21, 3111 (2006) · Zbl 1104.81067
[27] Chaichian, M.; Nishijima, K.; Tureanu, A., An interpretation of noncommutative field theory in terms of a quantum shift, Phys. Lett. B, 633, 129 (2006) · Zbl 1247.81519
[28] Vernov, Yu. S.; Mnatsakanova, M. N., Wightman axiomatic approach in noncommutative field theory, Theor. Math. Phys., 142, 337 (2005) · Zbl 1178.81165
[29] Wightman, A. S., La theorie quantique locale et la theorie quantique des champs, Ann. Inst. Henri Poincaré A, Phys. Théor., 1, 403 (1964) · Zbl 0128.45803
[30] Soloviev, Michael A., Axiomatic formulations of nonlocal and noncommutative field theories, Theor. Math. Phys., 147, 660 (2006) · Zbl 1177.81085
[31] Soloviev, Michael A., Failure of microcausality in noncommutative field theories, Phys. Rev. D, 77, Article 125013 pp. (2008)
[32] Grosse, Harald; Lechner, Gandalf, Noncommutative deformations of Wightman quantum field theories, J. High Energy Phys., 0809, Article 131 pp. (2008) · Zbl 1245.81069
[33] Chaichian, M.; Mnatsakanova, M. N.; Tureanu, A.; Vernov, Yu. S., Test functions space in noncommutative quantum field theory, J. High Energy Phys., 09, Article 125 pp. (2008) · Zbl 1245.81071
[34] Gel’fand, I. M.; Shilov, G. E., Generalized Functions, vol. 2 (1968), Academic Press Inc.: Academic Press Inc. New York, Chapter IV · Zbl 0159.18301
[35] Soloviev, M. A., Star product algebras of test functions, Theor. Math. Phys., 153, 1351 (2007) · Zbl 1136.81408
[36] Haag, R., On quantum field theories, Dan. Mat.-Fys. Medd., 29, 12, 3 (1955) · Zbl 0067.21102
[37] Federbush, P. G.; Johnson, K. A., The uniqueness of the two-point function, Phys. Rev., 120, 1926 (1960) · Zbl 0090.19902
[38] Jost, R., Properties of wightman functions, (Caianiello, E. R., Lectures on Field Theory and Many-Body Problem (1961), Academic Press: Academic Press New Jork) · Zbl 0111.45404
[39] Strocchi, F., Selected Topics on the General Properties of Quantum Field Theory (1993), World Scientific · Zbl 0817.46073
[40] Chaichian, M.; Mnatsakanova, M. N.; Tureanu, A.; Vernov, Yu. S., Classical theorems in noncommutative quantum field theory · Zbl 1058.81723
[41] Lehmann, H.; Symanzik, K.; Zimmermann, W., Nuovo Cimento. Nuovo Cimento, Nuovo Cimento, 6, 319 (1957) · Zbl 0077.42501
[42] Wightman, A. S., Quantum field theory and analytic function of several complex variables, J. Indian Math. Soc., 24, 625 (1960-1961) · Zbl 0105.22101
[43] Petrina, D. Ya., On the impossibility of constructing a non-local field theory with positive spectrum of the energy-momentum operator, Ukr. Mat. Zh., 13, 109 (1961) · Zbl 0100.41010
[44] Vladimirov, V. S., Construction of envelopes of holomorphy for a special kind of region, Sov. Math. Dokl., 1, 1039 (1960) · Zbl 0118.30301
[45] Vladimirov, V. S., Methods of the Theory of Functions of Several Complex Variables (1966), MIT Press: MIT Press Cambridge, Massachusetts
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.