×

Chiral magnetic effect and three-point function from AdS/CFT correspondence. (English) Zbl 1472.81214

Summary: The chiral magnetic effect with a fluctuating chiral imbalance is more realistic in the evolution of quark-gluon plasma, which reflects the random gluonic topological transition. Incorporating this dynamics, we calculate the chiral magnetic current in response to space-time dependent axial gauge potential and magnetic field in AdS/CFT correspondence. In contrast to conventional treatment of constant axial chemical potential, the response function here is the AVV three-point function of the \(\mathcal{N} = 4\) super Yang-Mills at strong coupling. Through an iterative solution of the nonlinear equations of motion in Schwarzschild-\(\mathrm{AdS}_5\) background, we are able to express the AVV function in terms of two Heun functions and prove its UV/IR finiteness, as expected for \(\mathcal{N} = 4\) super Yang-Mills theory. We found that the dependence of the chiral magnetic current on a non-constant chiral imbalance is non-local, different from hydrodynamic approximation, and demonstrates the subtlety of the infrared limit discovered in field theoretic approach. We expect our results enrich the understanding of the phenomenology of the chiral magnetic effect in the context of relativistic heavy ion collisions.

MSC:

81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
81T60 Supersymmetric field theories in quantum mechanics
81V05 Strong interaction, including quantum chromodynamics
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
83C57 Black holes
83E05 Geometrodynamics and the holographic principle

References:

[1] Fukushima, K.; Kharzeev, DE; Warringa, HJ, The chiral magnetic effect, Phys. Rev. D, 78, 074033 (2008) · doi:10.1103/PhysRevD.78.074033
[2] Kharzeev, DE; McLerran, LD; Warringa, HJ, The effects of topological charge change in heavy ion collisions: ‘event by event P and CP-violation’, Nucl. Phys. A, 803, 227 (2008) · doi:10.1016/j.nuclphysa.2008.02.298
[3] Kharzeev, DE; Warringa, HJ, Chiral magnetic conductivity, Phys. Rev. D, 80, 034028 (2009) · doi:10.1103/PhysRevD.80.034028
[4] Son, DT; Surowka, P., Hydrodynamics with triangle anomalies, Phys. Rev. Lett., 103, 191601 (2009) · doi:10.1103/PhysRevLett.103.191601
[5] STAR collaboration, Azimuthal charged-particle correlations and possible local strong parity violation, Phys. Rev. Lett.103 (2009) 251601 [arXiv:0909.1739] [INSPIRE].
[6] STAR collaboration, Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions, Phys. Rev. C81 (2010) 054908 [arXiv:0909.1717] [INSPIRE].
[7] STAR collaboration, Fluctuations of charge separation perpendicular to the event plane and local parity violation in \(\sqrt{s_{NN}} = 200\) GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider, Phys. Rev. C88 (2013) 064911 [arXiv:1302.3802] [INSPIRE].
[8] STAR collaboration, Measurement of charge multiplicity asymmetry correlations in high-energy nucleus-nucleus collisions at \(\sqrt{s_{NN}} = 200\) GeV, Phys. Rev. C89 (2014) 044908 [arXiv:1303.0901] [INSPIRE].
[9] STAR collaboration, Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC, Phys. Rev. Lett.113 (2014) 052302 [arXiv:1404.1433] [INSPIRE].
[10] ALICE collaboration, Charge separation relative to the reaction plane in Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV, Phys. Rev. Lett.110 (2013) 012301 [arXiv:1207.0900] [INSPIRE].
[11] ALICE collaboration, Constraining the magnitude of the chiral magnetic effect with event shape engineering in Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV, Phys. Lett. B777 (2018) 151 [arXiv:1709.04723] [INSPIRE].
[12] CMS collaboration, Observation of charge-dependent azimuthal correlations in p-Pb collisions and its implication for the search for the chiral magnetic effect, Phys. Rev. Lett.118 (2017) 122301 [arXiv:1610.00263] [INSPIRE].
[13] CMS collaboration, Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in pPb and PbPb collisions at the CERN Large Hadron Collider, Phys. Rev. C97 (2018) 044912 [arXiv:1708.01602] [INSPIRE].
[14] Son, DT; Spivak, BZ, Chiral anomaly and classical negative magnetoresistance of Weyl metals, Phys. Rev. B, 88, 104412 (2013) · doi:10.1103/PhysRevB.88.104412
[15] Li, Q., Observation of the chiral magnetic effect in ZrTe_5, Nature Phys., 12, 550 (2016) · doi:10.1038/nphys3648
[16] Huang, X., Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs, Phys. Rev. X, 5, 031023 (2015)
[17] Taguchi, K.; Tanaka, Y., Axial current driven by magnetization dynamics in Dirac semimetals, Phys. Rev. B, 91, 054422 (2015) · doi:10.1103/PhysRevB.91.054422
[18] Hou, D.; Liu, H.; Ren, H-C, Some field theoretic issues regarding the chiral magnetic effect, JHEP, 05, 046 (2011) · Zbl 1296.81139 · doi:10.1007/JHEP05(2011)046
[19] Gao, J-H; Liang, Z-T; Pu, S.; Wang, Q.; Wang, X-N, Chiral anomaly and local polarization effect from quantum kinetic approach, Phys. Rev. Lett., 109, 232301 (2012) · doi:10.1103/PhysRevLett.109.232301
[20] Gynther, A.; Landsteiner, K.; Pena-Benitez, F.; Rebhan, A., Holographic anomalous conductivities and the chiral magnetic effect, JHEP, 02, 110 (2011) · Zbl 1294.81281 · doi:10.1007/JHEP02(2011)110
[21] Y. Bu, M. Lublinsky and A. Sharon, Anomalous transport from holography. Part I, JHEP11 (2016) 093 [arXiv:1608.08595] [INSPIRE]. · Zbl 1390.83153
[22] Yee, H-U, Holographic chiral magnetic conductivity, JHEP, 11, 085 (2009) · doi:10.1088/1126-6708/2009/11/085
[23] Rebhan, A.; Schmitt, A.; Stricker, SA, Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model, JHEP, 01, 026 (2010) · Zbl 1269.81201 · doi:10.1007/JHEP01(2010)026
[24] Jiang, Y.; Shi, S.; Yin, Y.; Liao, J., Quantifying the chiral magnetic effect from anomalous-viscous fluid dynamics, Chin. Phys. C, 42, 011001 (2018) · doi:10.1088/1674-1137/42/1/011001
[25] Shi, S.; Zhang, H.; Hou, D.; Liao, J., Signatures of chiral magnetic effect in the collisions of isobars, Phys. Rev. Lett., 125, 242301 (2020) · doi:10.1103/PhysRevLett.125.242301
[26] Guo, X.; Liao, J.; Wang, E., Spin hydrodynamic generation in the charged subatomic swirl, Sci. Rep., 10, 2196 (2020) · doi:10.1038/s41598-020-59129-6
[27] V.A. Rubakov, On chiral magnetic effect and holography, arXiv:1005.1888 [INSPIRE].
[28] Horvath, M.; Hou, D.; Liao, J.; Ren, H-C, Chiral magnetic response to arbitrary axial imbalance, Phys. Rev. D, 101, 076026 (2020) · doi:10.1103/PhysRevD.101.076026
[29] Feng, B.; Hou, D-F; Ren, H-C; Yuan, S., Noncommutativity of the static and homogeneous limit of the axial chemical potential in the chiral magnetic effect, Phys. Rev. D, 103, 056004 (2021) · doi:10.1103/PhysRevD.103.056004
[30] Adler, SL, Axial vector vertex in spinor electrodynamics, Phys. Rev., 177, 2426 (1969) · doi:10.1103/PhysRev.177.2426
[31] Adler, SL; Bardeen, WA, Absence of higher order corrections in the anomalous axial vector divergence equation, Phys. Rev., 182, 1517 (1969) · doi:10.1103/PhysRev.182.1517
[32] Coleman, SR; Hill, BR, No more corrections to the topological mass term in QED in three-dimensions, Phys. Lett. B, 159, 184 (1985) · doi:10.1016/0370-2693(85)90883-4
[33] Maldacena, JM, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38, 1113 (1999) · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[34] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[35] Freedman, DZ; Mathur, SD; Matusis, A.; Rastelli, L., Correlation functions in the CFT_d/AdS_d+1correspondence, Nucl. Phys. B, 546, 96 (1999) · Zbl 0944.81041 · doi:10.1016/S0550-3213(99)00053-X
[36] E.T. Whittaker and G.N. Watson, A course of modern analysis, chapter XXIII, fourth edition, Cambrige University Press, Cambrige, U.K. (1927). · Zbl 1458.30002
[37] Policastro, G.; Son, DT; Starinets, AO, From AdS/CFT correspondence to hydrodynamics, JHEP, 09, 043 (2002) · doi:10.1088/1126-6708/2002/09/043
[38] Bu, Y.; Lublinsky, M.; Sharon, A., U(1) current from the AdS/CFT: diffusion, conductivity and causality, JHEP, 04, 136 (2016) · Zbl 1388.83191
[39] Bu, Y.; Demircik, T.; Lublinsky, M., Nonlinear chiral transport from holography, JHEP, 01, 078 (2019) · Zbl 1409.81108 · doi:10.1007/JHEP01(2019)078
[40] A.A. Ansel’m and A.A. Johansen, Radiative corrections to the axial anomaly, JETP Lett.49 (1989) 214 [Sov. Phys. JETP69 (1989) 670] [Pisma Zh. Eksp. Teor. Fiz.49 (1989) 185] [Zh. Eksp. Teor. Fiz.96 (1989) 1181] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.