×

Linear encoding of the spatiotemporal cat. (English) Zbl 1472.37064

The technical novelty of the paper is a working out of a very special model of many-particle dynamics, interpreted as a discretization of a classical \(d\)-dimensional field theory. The main motivation of this endeavour is to describe, by means of the discrete symbolic dynamics, the spatiotemporal chaos (or turbulence) in spatially extended, strongly nonlinear field theories. To exemplify the idea, one may invoke an approximation of turbulent motions of a physical flow, in terms of coupled map lattice models (with discretized spacetime labels). It is the dynamics of finite domains that captures important small-scale spatial structures, being in turn modeled by discrete time maps (Poincaré sections of a single ‘particle’ dynamics) attached to lattice sites. It is presumed that neighboring sites are coupled, in consistency with ranslational and reflection symmetries of the problem. This particular path of reasoning is followed in the present paper by exploiting the coupled cat map lattice built from the Thom-Anosov-Arnol’d-Sinai cat maps (modeling the Hamiltonian dynamics of individual ‘particles’) at sites of a one-dimensional spatial lattice, presumed to be linearly coupled (hence ‘linear encoding’) to their nearest neighbors. The key insight is that the arising two-dimensional spatiotemporal pattern is best described by the corresponding two-dimensional spatiotemporal symbol lattice rather than by a one-dimensional temporal symbol sequence. In case of the spatiotemporal cat its every solution is uniquely encoded by a linear transformation to the corresponding finite alphabet two-dimensional symbol lattice, a spatiotemporal generalization of the linear code for temporal evolution of a cat map, introduced by I. Percival and F. Vivaldi [Physica D 27, 373–386 (1987; Zbl 0647.58031)]. It is shown that the state of the system over a finite spatiotemporal domain can be described with exponentially increasing precision by a finite pattern of symbols. A systematic, lattice Green function methodology is provided to calculate the frequency (i.e., the measure) of such states. The authors rephrase this result as follows: “local dynamics, observed through a finite spatiotemporal window, can often be thought of as a visitation sequence of a finite repertoire of finite patterns. To make statistical predictions about the system, one needs to know how often a given pattern occurs.”

MSC:

37J46 Periodic, homoclinic and heteroclinic orbits of finite-dimensional Hamiltonian systems
37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
37E30 Dynamical systems involving homeomorphisms and diffeomorphisms of planes and surfaces
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
39A23 Periodic solutions of difference equations
37B10 Symbolic dynamics

Citations:

Zbl 0647.58031

Software:

Mathematica

References:

[1] Akila, M.; Gutkin, B.; Braun, P.; Waltner, D.; Guhr, T., Semiclassical prediction of large spectral fluctuations in interacting kicked spin chains, Ann. Phys., NY, 389, 250-282 (2018) · doi:10.1016/j.aop.2017.12.004
[2] Akila, M.; Waltner, D.; Gutkin, B.; Braun, P.; Guhr, T., Collectivity and periodic orbits in a chain of interacting, kicked spins, Acta Phys. Pol. A, 132, 1661-1665 (2017) · doi:10.12693/aphyspola.132.1661
[3] Akila, M.; Waltner, D.; Gutkin, B.; Braun, P.; Guhr, T., Semiclassical identification of periodic orbits in a quantum many-body system, Phys. Rev. Lett., 118 (2017) · doi:10.1103/physrevlett.118.164101
[4] Akila, M.; Waltner, D.; Gutkin, B.; Guhr, T., Particle-time duality in the kicked Ising spin chain, J. Phys. A: Math. Theor., 49 (2016) · Zbl 1356.82021 · doi:10.1088/1751-8113/49/37/375101
[5] Arnol’d, V. I.; Avez, A., Ergodic Problems of Classical Mechanics (1989), Redwood City: Addison-Wesley, Redwood City · Zbl 0167.22901
[6] Bertini, B.; Kos, P.; Prosen, T., Exact spectral form factor in a minimal model of many-body quantum chaos, Phys. Rev. Lett., 121 (2018) · doi:10.1103/physrevlett.121.264101
[7] Bertini, B.; Kos, P.; Prosen, T., Entanglement spreading in a minimal model of maximal many-body quantum chaos, Phys. Rev. X, 9 (2019) · doi:10.1103/physrevx.9.021033
[8] Bertini, B.; Kos, P.; Prosen, T., Exact correlation functions for dual-unitary lattice models in 1 + 1 dimensions, Phys. Rev. Lett., 123 (2019) · doi:10.1103/physrevlett.123.210601
[9] Bertini, B.; Kos, P.; Prosen, T., Operator entanglement in local quantum circuits i: chaotic dual-unitary circuits, SciPost Phys., 8, 067 (2020) · doi:10.21468/scipostphys.8.4.067
[10] Bowen, R., Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms (1975), Berlin: Springer, Berlin · Zbl 0308.28010
[11] Braun, P.; Waltner, D.; Akila, M.; Gutkin, B.; Guhr, T., Transition from quantum chaos to localization in spin chains, Phys. Rev. E, 101 (2020)
[12] Brini, F.; Siboni, S.; Turchetti, G.; Vaienti, S., Decay of correlations for the automorphism of the torus, Nonlinearity, 10, 1257-1268 (1997) · Zbl 0908.58029 · doi:10.1088/0951-7715/10/5/012
[13] Bunimovich, L. A.; Sinai, Y. G., Spacetime chaos in coupled map lattices, Nonlinearity, 1, 491 (1988) · Zbl 0679.58028 · doi:10.1088/0951-7715/1/4/001
[14] Chirikov, B. V., A universal instability of many-dimensional oscillator systems, Phys. Rep., 52, 263-379 (1979) · doi:10.1016/0370-1573(79)90023-1
[15] Claeys, P. W.; Lamacraft, A., Maximum velocity quantum circuits, Phys. Rev. Res., 2 (2020)
[16] Creagh, S. C., Quantum zeta function for perturbed cat maps, Chaos, 5, 477-493 (1995) · Zbl 1055.81547 · doi:10.1063/1.166119
[17] Cvitanović, P.; Artuso, R.; Mainieri, R.; Tanner, G.; Vattay, G., Chaos: Classical and Quantum (2018), Copenhagen: Niels Bohr Institute, Copenhagen
[18] Cvitanović, P.; Liang, H., Spatiotemporal cat: a chaotic field theory (2020)
[19] Dana, I., General quantization of canonical maps on a two-torus, J. Phys. A: Math. Gen., 35, 3447 (2002) · Zbl 1021.81019 · doi:10.1088/0305-4470/35/15/307
[20] Devaney, R. L., An Introduction to Chaotic Dynamical Systems (2008), Boca Raton, FL: CRC Press
[21] Dorr, F. W., The direct solution of the discrete Poisson equation on a rectangle, SIAM Rev., 12, 248-263 (1970) · Zbl 0208.42403 · doi:10.1137/1012045
[22] Dresselhaus, M. S.; Dresselhaus, G.; Jorio, A., Group Theory: Application to the Physics of Condensed Matter (2007), New York: Springer, New York · Zbl 1175.20001
[23] Fetter, A. L.; Walecka, J. D., Theoretical Mechanics of Particles and Continua (2003), New York: Dover, New York · Zbl 1191.70001
[24] García-Mata, I.; Saraceno, M., Spectral properties and classical decays in quantum open systems, Phys. Rev. E, 69 (2004) · doi:10.1103/physreve.69.056211
[25] Gopalakrishnan, S.; Lamacraft, A., Unitary circuits of finite depth and infinite width from quantum channels, Phys. Rev. B, 100 (2019) · doi:10.1103/physrevb.100.064309
[26] Gutkin, B.; Braun, P.; Akila, M.; Waltner, D.; Guhr, T., Exact local correlations in kicked chains, Phys. Rev. B, 102 (2020) · doi:10.1103/physrevb.102.174307
[27] Gutkin, B.; Osipov, V., Clustering of periodic orbits and ensembles of truncated unitary matrices, J. Stat. Phys., 153, 1049-1064 (2013) · Zbl 1285.81031 · doi:10.1007/s10955-013-0859-9
[28] Gutkin, B.; Al Osipov, V., Clustering of periodic orbits in chaotic systems, Nonlinearity, 26, 177 (2013) · Zbl 1263.05095 · doi:10.1088/0951-7715/26/1/177
[29] Gutkin, B.; Osipov, V., Classical foundations of many-particle quantum chaos, Nonlinearity, 29, 325-356 (2016) · Zbl 1332.81071 · doi:10.1088/0951-7715/29/2/325
[30] Hannay, J. H.; Berry, M. V., Quantization of linear maps on a torus-fresnel diffraction by a periodic grating, Phys. D, 1, 267-290 (1980) · Zbl 1194.81107 · doi:10.1016/0167-2789(80)90026-3
[31] Hu, G. Y.; O’Connell, R. F., Analytical inversion of symmetric tridiagonal matrices, J. Phys. A: Math. Gen., 29, 1511 (1996) · Zbl 0914.15002 · doi:10.1088/0305-4470/29/7/020
[32] Kaneko, K., Transition from torus to chaos accompanied by frequency lockings with symmetry breaking: in connection with the coupled-logistic map, Prog. Theor. Phys., 69, 1427-1442 (1983) · Zbl 1200.37032 · doi:10.1143/ptp.69.1427
[33] Kaneko, K., Period-doubling of Kink-Antikink patterns, quasiperiodicity in Antiferro-like structures and spatial intermittency in coupled logistic lattice: towards a prelude of a ‘field theory of chaos’, Prog. Theor. Phys., 72, 480-486 (1984) · Zbl 1074.37521 · doi:10.1143/ptp.72.480
[34] Keating, J. P., The cat maps: quantum mechanics and classical motion, Nonlinearity, 4, 309-341 (1991) · Zbl 0726.58037 · doi:10.1088/0951-7715/4/2/006
[35] Kurlberg, P.; Rudnick, Z., Hecke theory and equidistribution for the quantization of linear maps of the torus, Duke Math. J., 103, 47-77 (2000) · Zbl 1013.81017 · doi:10.1215/s0012-7094-00-10314-6
[36] Lichtenberg, A. J.; Lieberman, M. A., Regular and Chaotic Dynamics (2013), New York: Springer, New York · Zbl 0748.70001
[37] Martin, P. A., Discrete scattering theory: green’s function for a square lattice, Wave Motion, 43, 619-629 (2006) · Zbl 1231.35135 · doi:10.1016/j.wavemoti.2006.05.006
[38] Mestel, B.; Percival, I., Newton method for highly unstable orbits, Phys. D, 24, 172 (1987) · Zbl 0616.65134 · doi:10.1016/0167-2789(87)90072-8
[39] Müller, S.; Heusler, S.; Braun, P.; Haake, F.; Altland, A., Semiclassical foundation of universality in quantum chaos, Phys. Rev. Lett., 93 (2004) · doi:10.1103/physrevlett.93.014103
[40] Percival, I.; Vivaldi, F., A linear code for the sawtooth and cat maps, Phys. D, 27, 373-386 (1987) · Zbl 0647.58031 · doi:10.1016/0167-2789(87)90037-6
[41] Percival, I.; Vivaldi, F., Arithmetical properties of strongly chaotic motions, Phys. D, 25, 105-130 (1987) · Zbl 0616.58039 · doi:10.1016/0167-2789(87)90096-0
[42] Pesin, Y. B., Characteristic Lyapunov exponents and smooth ergodic theory, Russ. Math. Surv., 32, 55-114 (1977) · Zbl 0383.58011 · doi:10.1070/rm1977v032n04abeh001639
[43] Pesin, Y. B.; Sinai, Y. G., Space-time chaos in the system of weakly interacting hyperbolic systems, J. Geom. Phys., 5, 483-492 (1988) · Zbl 0727.58031 · doi:10.1016/0393-0440(88)90035-6
[44] Ruelle, D., A measure associated with axiom-A attractors, Am. J. Math., 98, 619-654 (1976) · Zbl 0355.58010 · doi:10.2307/2373810
[45] Sieber, M.; Richter, K., Correlations between periodic orbits and their role in spectral statistics, Phys. Scr., T90, 128 (2001) · doi:10.1238/physica.topical.090a00128
[46] Sinai, Y. G., On the notion of entropy of a dynamical system, Selecta I, vol 124, 768-771 (1959), New York: Springer, New York · Zbl 0086.10102
[47] Slipantschuk, J.; Bandtlow, O. F.; Just, W., Complete spectral data for analytic Anosov maps of the torus, Nonlinearity, 30, 2667 (2017) · Zbl 1379.37068 · doi:10.1088/1361-6544/aa700f
[48] Sturman, R.; Ottino, J. M.; Wiggins, S., The Mathematical Foundations of Mixing (2006), Cambridge: Cambridge University Press, Cambridge · Zbl 1111.37300
[49] Vallejos, R. O.; Saraceno, M., The construction of a quantum Markov partition, J. Phys. A: Math. Gen., 32, 7273 (1999) · Zbl 0966.81010 · doi:10.1088/0305-4470/32/42/304
[50] Wolfram S., Mathematica 11 (2017), (Champaign, IL: Wolfram Research), (Champaign, IL
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.