×

Pressure, Poincaré series and box dimension of the boundary. (English) Zbl 1472.37028

Summary: In this note we prove two related results. First, we show that for certain Markov interval maps with infinitely many branches the upper box dimension of the boundary can be read from the pressure of the geometric potential. Secondly, we prove that the box dimension of the set of iterates of a point in \(\partial\mathbb{H}^n\) with respect to a parabolic subgroup of isometries equals the critical exponent of the Poincaré series of the associated group. This establishes a relationship between the entropy at infinity and dimension theory.

MSC:

37C45 Dimension theory of smooth dynamical systems
37E05 Dynamical systems involving maps of the interval
37A30 Ergodic theorems, spectral theory, Markov operators
37A35 Entropy and other invariants, isomorphism, classification in ergodic theory

References:

[1] Barreira, L.; Iommi, G., Suspension flows over countable Markov shifts, J. Stat. Phys., 124, 207-230 (2006) · Zbl 1160.37338 · doi:10.1007/s10955-006-9140-9
[2] Bishop, C. J.; Jones, P. W., Hausdorff dimension and Kleinian groups, Acta Math., 179, 1-39 (1997) · Zbl 0921.30032 · doi:10.1007/bf02392718
[3] Bourdon, M., Structure conforme au bord et flot géodésique d’un CAT(-1)-espace, Enseign. Math, 41, 63-102 (1995) · Zbl 0871.58069 · doi:10.24033/ast.975
[4] Bowditch, B., Discrete parabolic groups, J. Differ. Geom., 38, 559-583 (1993) · Zbl 0793.53029 · doi:10.4310/jdg/1214454483
[5] Bowditch, B., Geometrical finiteness with variable negative curvature, Duke Math. J., 77, 229-274 (1995) · Zbl 0877.57018 · doi:10.1215/s0012-7094-95-07709-6
[6] Bowen, R., Hausdorff dimension of quasi-circles, Publ. Math.IHÉS, 50, 11-25 (1979) · Zbl 0439.30032 · doi:10.1007/bf02684767
[7] Bridson, M.; Haefliger, A., Metric Spaces of Non-Positive Curvature, vol 319, xxii+643 (1999), Berlin: Springer, Berlin · Zbl 0988.53001
[8] Cornfeld, I. P.; Fomin, S. V.; Sinai, Y. G., Ergodic Theory, vol 245, x+486 (1982), New York: Springer, New York · Zbl 0493.28007
[9] Dal’bo, F.; Otal, J-P; Peigné, M., Séries de Poincaré des groupes géométriquement finis, Isr. J. Math., 118, 109-124 (2000) · Zbl 0968.53023 · doi:10.1007/bf02803518
[10] Dal’bo, F.; Peigné, M., Some negatively curved manifolds with cusps, mixing and counting, J. für die Reine Angewandte Math. (Crelle’s J.), 497, 141-169 (1998) · Zbl 0890.53043 · doi:10.1515/crll.1998.037
[11] Falconer, K., Fractal Geometry, xxii+288 (1990), New York: Wiley, New York
[12] Falconer, K., Techniques in Fractal Geometry, xviii+256 (1997), New York: Wiley, New York · Zbl 0869.28003
[13] Fan, A-H; Jordan, T.; Liao, L.; Rams, M., Multifractal analysis for expanding interval maps with infinitely many branches, Trans. Am. Math. Soc., 367, 1847-1870 (2015) · Zbl 1317.28013 · doi:10.1090/s0002-9947-2014-06141-2
[14] Iommi, G.; Todd, M.; Velozo, A., A Upper semi-continuity of entropy in non-compact settings, Math. Res. Lett., 27, 1055-1078 · Zbl 1462.37006 · doi:10.4310/MRL.2020.v27.n4.a4
[15] Iommi, G., Multifractal analysis for countable Markov shifts, Ergod. Theor. Dynam. Syst., 25, 1881-1907 (2005) · Zbl 1161.37303 · doi:10.1017/s0143385705000350
[16] Iommi, G.; Jordan, T., Multifractal analysis of Birkhoff averages for countable Markov maps, Ergod. Theor. Dynam. Syst., 35, 2559-2586 (2015) · Zbl 1356.37006 · doi:10.1017/etds.2015.44
[17] Iommi, G.; Riquelme, F.; Velozo, A., Entropy in the cusp and phase transitions for geodesic flows, Isr. J. Math., 225, 609-659 (2018) · Zbl 1398.37026 · doi:10.1007/s11856-018-1670-8
[18] Iommi, G.; Todd, M.; Velozo, A., Escape of mass and entropy for countable Markov shifts. (2019)
[19] Mauldin, R. D.; Urbański, M., Dimensions and measures in infinite iterated function systems, Proc. Lond. Math. Soc., 73, 105-154 (1996) · Zbl 0852.28005 · doi:10.1112/plms/s3-73.1.105
[20] Otal, J-P; Peigné, M., Principe variationnel et groupes kleiniens, Duke Math. J., 125, 15-44 (2004) · Zbl 1112.37019 · doi:10.1215/s0012-7094-04-12512-6
[21] Paulin, F.; Pollicott, M.; Schapira, B., Equilibrium states in negative curvature, Asterisque, 373, viii+281 (2015) · Zbl 1347.37001 · doi:10.24033/ast.975
[22] Pit, V.; Schapira, B., Finiteness of Gibbs measures on noncompact manifolds with pinched negative curvature, Ann. Inst. Fourier, 68, 457-510 (2018) · Zbl 1409.37039 · doi:10.5802/aif.3167
[23] Pollicott, M.; Weiss, H., Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation, Commun. Math. Phys., 207, 145-171 (1999) · Zbl 0960.37008 · doi:10.1007/s002200050722
[24] Riquelme, F.; Velozo, A., Escape of mass and entropy for geodesic flows, Ergod. Theor. Dynam. Syst., 39, 446-473 (2019) · Zbl 1414.37021 · doi:10.1017/etds.2017.40
[25] Roblin, T., Sur la fonction orbitale des groupes discrets en courbure négative, Ann. Inst. Fourier, 52, 145-151 (2002) · Zbl 1008.20040 · doi:10.5802/aif.1880
[26] Sarig, O., Existence of Gibbs measures for countable Markov shifts, Proc. Am. Math. Soc., 131, 1751-1758 (2003) · Zbl 1009.37003 · doi:10.1090/s0002-9939-03-06927-2
[27] Stratmann, B. O.; Urbański, M., The box-counting dimension for geometrically finite Kleinian groups, Fund. Math., 149, 83-93 (1996) · Zbl 0847.20046
[28] Sullivan, D., The density at infinity of a discrete group of hyperbolic motions, Publ. Math.IHÉS, 50, 171-202 (1979) · Zbl 0418.01006 · doi:10.1007/bf02684773
[29] Velozo, A., Phase transitions for geodesic flows and the geometric potential (2017)
[30] Velozo, A., Thermodynamic formalism and the entropy at infinity of the geodesic flow (2017)
[31] Walters, P., An Introduction to Ergodic Theory, vol 79 (1981), Berlin: Springer, Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.