×

A characterization of one-component inner functions. (English) Zbl 1472.30026

In this interesting paper the authors study the class \(\mathcal I_c\) of one-component inner functions. This class comprises all inner functions \(\Theta\) whose level set \(\{z\in\mathbb D:|\Theta(z)|<\epsilon\}\) is connected for some \(\epsilon\in ]0,1[\) (hence for all bigger \(\epsilon\)). Their goal is to answer several questions by J. Cima and the rewiever [Complex Anal. Synerg. 3, Paper No. 2, 15 p. (2017; Zbl 1364.30064); in: Advancements in complex analysis. From theory to practice. Cham: Springer. 39–49 (2020; Zbl 1442.30064)]. Using Carleson squares, the authors first give a characterization of the class \(\mathcal I_c\) in terms of the location of the zeros and mass distribution of the singular measures associated with \(\Theta\). Let us give some sample results: if \(B\) is a Blaschke product with infinitely many zeros contained in a Stolz angle with vertex at \(e^{i\theta}\), then \(B\in\mathcal I_c\) if and only if \(\limsup_{r\to 1} |B(re^{i\theta})|<1\). Also, if \(\Theta\) is any inner function whose boundary singular set has Lebesgue measure zero, then there is an interpolating Blaschke product \(B\) such that \(B\Theta\in\mathcal I_c\). It is also shown that singular inner functions associated with a symmetric Cantor measure belong to \(\mathcal I_c\). Finally, if \(\sigma\) is a positive singular measure supported on a closed countable set \(E\subset \mathbb T\) with \(\sigma(\lambda)>0\) for all \(\lambda \in E\), then the associated singular inner function \(I_\sigma\) belongs to \(\mathcal I_c\). An explicit example of a discrete singular inner function is constructed which does not belong to \(\mathcal I_c\).

MSC:

30J05 Inner functions of one complex variable
30J10 Blaschke products
30J15 Singular inner functions of one complex variable

References:

[1] P.Ahern, ‘The mean modulus and the derivative of an inner function’, Indiana Univ. Math. J.28 (1979) 311-347. · Zbl 0415.30022
[2] P. R.Ahern and D. N.Clark, ‘On inner functions with \(H^p\) derivative’, Michigan Math. J.21 (1974) 115-127. · Zbl 0277.30027
[3] A. B.Aleksandrov, ‘Embedding theorems for coinvariant subspaces of the shift operator. II’, Zap. Nauchn. Sem. S.‐Peterburg. Otdel. Mat. Inst. Steklov. (POMI)262 (1999), Issled. po Lineǐn. Oper. i Teor. Funkts. 27, 5-48, 231. (Translation in J. Math. Sci. (New York) 110 (2002) 2907-2929.) · Zbl 1060.30043
[4] A. B.Aleksandrov, ‘Inner functions and related spaces of pseudocontinuable functions’, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)170 (1989), Issled. Lineǐn. Oper. Teorii Funktsiǐ. 17, 7-33, 321. (Translation in J. Soviet Math. 63 (1993) 115-129.) · Zbl 0784.30030
[5] A.Aleman, Y.Lyubarskii, E.Malinnikova and K.‐M.Perfekt, ‘Trace ideal criteria for embeddings and composition operators on model spaces’, J. Funct. Anal.270 (2016) 861-883. · Zbl 1330.47030
[6] A.Baranov, R.Bessonov and V.Kapustin, ‘Symbols of truncated Toeplitz operators’, J. Funct. Anal.261 (2011) 3437-3456. · Zbl 1241.47025
[7] R. V.Bessonov, ‘Duality theorems for coinvariant subspaces of \(H^1\)’, Adv. Math.271 (2015) 62-90. · Zbl 1310.30046
[8] R. V.Bessonov, ‘Fredholmness and compactness of truncated Toeplitz and Hankel operators’, Integral Equations Operator Theory82 (2015) 451-467. · Zbl 1335.47015
[9] C. J.Bishop, ‘Bounded functions in the little Bloch space’, Pacific J. Math.142 (1990) 209-225. · Zbl 0652.30024
[10] J.Cima and R.Mortini, ‘One‐component inner functions’, Complex Anal. Synerg.3 (2017) Paper. No. 2. · Zbl 1364.30064
[11] J.Cima and R.Mortini, ‘One‐component inner functions II’, Advancements in complex analysis (eds D.Breaz (ed.) and M.Rassias (ed.); Springer, Berlin, 2020) 39-49. · Zbl 1442.30064
[12] B.Cohn, ‘Carleson measures for functions orthogonal to invariant subspaces’, Pacific J. Math.103 (1982) 347-364. · Zbl 0509.30026
[13] P.Duren, Theory of \(H^p\) spaces (Academic Press, New York-London, 1970). · Zbl 0215.20203
[14] J.Garnett, Bounded analytic functions. Revised 1st edn (Springer, New York, NY, 2007).
[15] J.Garnett and A.Nicolau, ‘Interpolating Blaschke products generate \(H^\infty \)’, Pacific J. Math.173 (1996) 501-510. · Zbl 0871.30031
[16] O.Ivrii, ‘Prescribing inner parts of derivatives of inner functions’, J. Anal. Math.139 (2019) 495-519. · Zbl 1460.30019
[17] O.Ivrii, ‘Stable convergence of inner functions’, J. Lond. Math. Soc., https://doi.org/10.1112/jlms.12319. · Zbl 1456.30096 · doi:10.1112/jlms.12319
[18] P.Jones, ‘Bounded holomorphic functions with all level sets of infinite length’, Michigan Math. J.27 (1980) 75-79. · Zbl 0386.30018
[19] R.Mortini and A.Nicolau, ‘Frostman shifts of inner functions’, J. Anal. Math.92 (2004) 285-326. · Zbl 1064.30029
[20] F.Nazarov and A.Volberg, ‘The Bellman function, the two‐weight Hilbert transform, and embeddings of the model spaces \(K_{\operatorname{\Theta}} \). Dedicated to the memory of Thomas H. Wolff’, J. Anal. Math.87 (2002) 385-414. · Zbl 1035.42010
[21] A.Nicolau, ‘Finite products of interpolating Blaschke products’, J. Lond. Math. Soc.50 (1994) 520-531. · Zbl 0819.30019
[22] J. A.Peláez, ‘Sharp results on the integrability of the derivative of an interpolating Blaschke product’, Forum Math.20 (2008) 1039-1054. · Zbl 1159.30021
[23] A.Reijonen, ‘Remarks on one‐component inner functions’, Ann. Acad. Sci. Fenn. Math.44 (2019) 569-580. · Zbl 1423.30040
[24] M.Tsuji, Potential theory in modern function theory (Chelsea Publishing, New York, NY, 1975). · Zbl 0322.30001
[25] A. L.Vol’berg and S. R.Treil’, ‘Embedding theorems for invariant subspaces of the inverse shift operator’, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)149 (1986), Issled. Lineǐn. Teor. Funktsiǐ. XV, 38-51, 186-187. (Translation in J. Soviet Math. 42 (1988) 1562-1572.) · Zbl 0654.30027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.