×

Representations of the Lie algebra of vector fields on a sphere. (English) Zbl 1472.17024

Summary: For an affine algebraic variety \(X\) we study a category of modules that admit compatible actions of both the algebra \(A\) of functions on \(X\) and the Lie algebra of vector fields on \(X\). In particular, for the case when \(X\) is the sphere \(\mathbb{S}^2\), we construct a set of simple modules that are finitely generated over \(A\). In addition, we prove that the monoidal category that these modules generate is equivalent to the category of finite-dimensional rational \(\mathrm{GL}_2\)-modules.

MSC:

17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B66 Lie algebras of vector fields and related (super) algebras

References:

[1] Bavula, V. V., Generators and defining relations for the ring of differential operators on a smooth affine algebraic variety, Algebr. Represent. Theory, 13, 159-187 (2010) · Zbl 1184.13075
[2] Billig, Y., Jet modules, Can. J. Math., 59, 712-729 (2007) · Zbl 1166.17008
[3] Billig, Y.; Futorny, V., Representations of Lie algebra of vector fields on a torus and chiral de Rham complex, Trans. Am. Math. Soc., 366, 4697-4731 (2014) · Zbl 1306.17008
[4] Billig, Y.; Futorny, V., Classification of irreducible representations of Lie algebra of vector fields on a torus, J. Reine Angew. Math., 2016, 720, 199-216 (2016) · Zbl 1379.17011
[5] Billig, Y.; Futorny, V., Lie algebras of vector fields on smooth affine varieties · Zbl 1434.17029
[6] Block, R. E., The irreducible representations of the Lie algebra \(s l(2)\) and of the Weyl algebra, Adv. Math., 39, 69-110 (1981) · Zbl 0454.17005
[7] Eswara Rao, S., Irreducible representations of the Lie-algebra of the diffeomorphisms of a \(d\)-dimensional torus, J. Algebra, 182, 401-421 (1996) · Zbl 0902.17012
[8] Eswara Rao, S., Partial classification of modules for Lie algebra of diffeomorphisms of d-dimensional torus, J. Math. Phys., 45, 8, 3322-3333 (2004) · Zbl 1071.17020
[9] Grothendieck, A., Avec la collaboration de J. Dieudonné, Éléments de géométrie algébrique: IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie, Publ. Math. IHES, 32, 5-361 (1967) · Zbl 0153.22301
[10] Jordan, D., On the ideals of a Lie algebra of derivations, J. Lond. Math. Soc., 33, 33-39 (1986) · Zbl 0591.17007
[11] Jordan, D., On the simplicity of Lie algebras of derivations of commutative algebras, J. Algebra, 228, 580-585 (2000) · Zbl 0982.17009
[12] Lang, S., Algebra (2002), Springer: Springer New York · Zbl 0984.00001
[13] Larsson, T. A., Conformal fields: a class of representations of Vect (N), Int. J. Mod. Phys. A, 7, 6493-6508 (1992) · Zbl 0972.17502
[14] Mathieu, O., Classification of Harish-Chandra modules over the Virasoro algebra, Invent. Math., 107, 225-234 (1992) · Zbl 0779.17025
[15] Mazorchuk, V.; Zhao, K., Supports of weight modules over Witt algebras, Proc. R. Soc. Edinb., Sect. A, 141, 155-170 (2011) · Zbl 1295.17007
[16] McConnell, J. C.; Robson, J. C., Noncommutative Noetherian Rings, Graduate Studies in Mathematics, vol. 30 (2001), American Mathematical Society: American Mathematical Society Providence, RI, with the cooperation of L. W. Small · Zbl 0980.16019
[17] Montgomery, S., Hopf algebras and their actions on rings, (CBMS Regional Conference Series in Mathematics, vol. 82 (1993), AMS). (CBMS Regional Conference Series in Mathematics, vol. 82 (1993), AMS), Trans. Am. Math. Soc., 366, 4697-4731 (2014) · Zbl 1306.17008
[18] Rudakov, A. N., Irreducible representations of infinite-dimensional Lie algebras of Cartan type, Math. USSR, Izv., 8, 836-866 (1974) · Zbl 0322.17004
[19] Schlichenmaier, M., Krichever-Novikov Type Algebras: Theory and Applications, De Gruyter Studies in Mathematics, vol. 53 (2014), Walter de Gruyter · Zbl 1347.17001
[20] Shafarevich, I. R., Basic Algebraic Geometry 1, Varieties in Projective Space (2013), Springer · Zbl 1273.14004
[21] Shen, G., Graded modules of graded Lie algebras of Cartan type. I. Mixed products of modules, Sci. China Ser. A, 29, 570-581 (1986) · Zbl 0601.17013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.