×

Comparative study of conventional and interval type-2 fuzzy logic controllers for velocity regulation in Lego Mindstorms ev3 humanoids. (English) Zbl 1471.93197

Kahraman, Cengiz (ed.) et al., Toward humanoid robots: the role of fuzzy sets. A handbook on theory and applications. Cham: Springer. Stud. Syst. Decis. Control 344, 201-219 (2021).
Summary: Recently, fuzzy logic has allowed complex systems to be designed and controlled more effectively than traditional approaches, since it provides a simple way to handle noisy or imprecise information. Nowadays, one of the great problems in the speed control cases is to make the decision to use a fuzzy logic control (FLC) system instead of a conventional controller system as a proportional integral (PI) and integral-derivative (PID). This chapter presents a comparative study using three types of controllers, FLC, PI and PID, applied to the speed control of a robot built using the ev3 Lego Mindstorms ev3 humanoids kit. Matlab and Simulink were used to validate the performance of the speed control obtained with the controller proposed in this paper. This particular type of robot has some similarities to Humanoid robots as it needs to move autonomously avoiding obstacles, so we plan to later implement the fuzzy controllers on larger and more complex Humanoid robots.
For the entire collection see [Zbl 1467.93001].

MSC:

93C85 Automated systems (robots, etc.) in control theory
93C42 Fuzzy control/observation systems
93B52 Feedback control

Software:

Matlab; Simulink
Full Text: DOI

References:

[1] Ang, K.H., Chong, G., Li, Y.: PID control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 13(4), 559-576 (2005)
[2] Raviraj, VSC; Sen, PC, Comparative study of proportional-integral, sliding mode, and fuzzy logic controllers for power converters, IEEE Trans. Ind. Appl., 33, 2, 518-524 (1997) · doi:10.1109/28.568018
[3] Cheng, Y., Nan, Q., Wang, R., Dong, T., Tian, Z.: Fuzzy proportional integral derivative control of a radiofrequency ablation temperature control system, pp. 1-5 (2017)
[4] Colonna, P., Organic rankine cycle power systems: from the concept to current technology, applications, and an outlook to the future, J. Eng. Gas Turbines Power, 137, 10, 100801 (2015) · doi:10.1115/1.4029884
[5] Ibrahim, Z.; Levi, E., A comparative analysis of fuzzy logic and PI speed control in high-performance AC drives using experimental approach, IEEE Trans. Ind. Appl., 38, 5, 1210-1218 (2002) · doi:10.1109/TIA.2002.802993
[6] Bingol, MC; Akpolat, ZH; Koca, GO; Březina, T.; Jabłoński, R., Robust control of a robot arm using an optimized pid controller, Mechatronics 2017, 484-492 (2018), Cham: Springer International Publishing, Cham · doi:10.1007/978-3-319-65960-2_60
[7] Bhandari, A.S., Chaudhuri, A., Roy, S., Negi, S., Sharad, M.: Single chip self-tunable N-input N-output PID control system with integrated analog front-end for miniature robotics, pp. 109-114 (2017)
[8] Sa-ngiamvibool, W.: Optimal fuzzy logic proportional integral derivative controller design by bee algorithm for hydro-thermal system. IEEE Trans. Ind. Inform. pp. 1-1 (2017)
[9] Zadeh, LA, Fuzzy sets, Inf. Control, 8, 3, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[10] Zadeh, LA, The concept of a linguistic variable and its application to approximate reasoning—I, Inf. Sci., 8, 3, 199-249 (1975) · Zbl 0397.68071 · doi:10.1016/0020-0255(75)90036-5
[11] Caraveo, C.; Valdez, F.; Castillo, O.; Melin, P.; Castillo, O.; Kacprzyk, J., Optimization mathematical functions for multiple variables using the algorithm of self-defense of the plants, Nature-Inspired Design of Hybrid Intelligent Systems, 631-640 (2017), Cham: Springer International Publishing, Cham · doi:10.1007/978-3-319-47054-2_41
[12] Amador-Angulo, L.; Castillo, O., A new fuzzy bee colony optimization with dynamic adaptation of parameters using interval type-2 fuzzy logic for tuning fuzzy controllers, Soft Comput., 22, 2, 571-594 (2018) · doi:10.1007/s00500-016-2354-0
[13] . Olivas, H., Valdez, F., Castillo, O., Melin, P.: Theory and background. In: Dynamic parameter adaptation for meta-heuristic optimization algorithms through type-2 fuzzy logic. Springer International Publishing, Cham, pp 3-10 (2018)
[14] Amador, L., Castillo, O.: Theory and background. In: Optimization of type-2 fuzzy controllers using the Bee Colony Algorithm. Springer International Publishing, Cham, pp. 7-11 (2017) · Zbl 1415.93001
[15] Bernal, E.; Castillo, O.; Soria, J.; Valdez, F., Imperialist competitive algorithm with dynamic parameter adaptation using fuzzy logic applied to the optimization of mathematical functions, Algorithms, 10, 1, 18 (2017) · Zbl 1461.68172 · doi:10.3390/a10010018
[16] Barraza, J.; Melin, P.; Valdez, F.; Gonzalez, C., Fuzzy fireworks algorithm based on a sparks dispersion measure, Algorithms, 10, 4, 83 (2017) · doi:10.3390/a10030083
[17] Ochoa, P.; Castillo, O.; Soria, J.; Hadjiski, M.; Atanassov, KT, Interval type-2 fuzzy logic dynamic mutation and crossover parameter adaptation in a fuzzy differential evolution method, Intuitionistic Fuzziness and Other Intelligent Theories and Their Applications, 81-94 (2019), Cham: Springer International Publishing, Cham · doi:10.1007/978-3-319-78931-6_5
[18] Poikselka, K., Vallivaara, I., Roning, J.: Evolutionary robotics on Lego NXT Platform, pp. 1137-1144 (2015)
[19] Azlan, N.Z., Zainudin, F., Yusuf, H.M., Toha, S.F., Yusoff, S.Z.S., Osman, N.H.: Fuzzy logic controlled miniature LEGO robot for undergraduate training system, pp. 2184-2188 (2007)
[20] Akmal, M.A., Jamin, N.F., Ghani, N.M.A.: Fuzzy logic controller for two wheeled EV3 LEGO robot, pp. 134-139 (2017)
[21] Nair, S., Coronado, E., Frye, M., Goldaracena, T., Arguello, C.: Particle swarm optimization for the control of a swarm of biological robots, pp. 1-4 (2015)
[22] Carpenter, J., Davis, J., Erwin-Stewart, N., Lee. T., Bransford, J., Vye, N.: Gender representation in humanoid robots for domestic use. Int. J. Soc. Robot. (special issue) 1(3), 261-265 (2009)
[23] Carpenter, J., Davis, J., Erwin-Stewart, N., Lee. T., Bransford, J., Vye, N.: Invisible machinery in function, not form: user expectations of a domestic humanoid robot. In: Proceedings of 6th Conference on Design and Emotion, Hong Kong, China (2008)
[24] Pereira, M.S., Nijs, Y., Shahid, S., Swerts, M.: Children’s lying behaviour in interactions with personified robots. In: Proceedings of British HCI 2016—Fusion, Bournemouth, UK (2016)
[25] Åström, KJ; Hägglund, T., Revisiting the Ziegler-Nichols step response method for PID control, J. Process Control, 14, 6, 635-650 (2004) · doi:10.1016/j.jprocont.2004.01.002
[26] Hang, CC; Åström, KJ; Ho, WK, Refinements of the Ziegler-Nichols tuning formula, IEE Proc. Control Theory Appl., 138, 2, 111 (1991) · doi:10.1049/ip-d.1991.0015
[27] Valério, D.; da Costa, JS, Tuning of fractional PID controllers with Ziegler-Nichols-type rules, Signal Process., 86, 10, 2771-2784 (2006) · Zbl 1172.94496 · doi:10.1016/j.sigpro.2006.02.020
[28] Sivanandam, S.N., Deepa, S.N.: Genetic algorithm optimization problems. In: Introduction to genetic algorithms, pp. 165-209. Springer, Berlin (2008). · Zbl 1129.90001
[29] Ünal, M., Ak, A., Topuz, V., Erdal, H.: Ant colony optimization (ACO). In: Optimization of PID Controllers Using Ant Colony and Genetic Algorithms, vol. 449, pp. 31-35. Springer, Berlin (2013) · Zbl 1260.93002
[30] Poli, R.; Kennedy, J.; Blackwell, T., Particle swarm optimization: an overview, Swarm Intell., 1, 1, 33-57 (2007) · doi:10.1007/s11721-007-0002-0
[31] Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: Harmony search. Simulation 76(2):60-68 (2001)
[32] Brest, J., Zumer, V., Maucec, M.S.: Self-adaptive differential evolution algorithm in constrained real-parameter optimization. In: 2006 IEEE International Conference on Evolutionary Computation, Vancouver, BC, Canada, pp. 215-222 (2006)
[33] Bazylev, DN, Approaches for stabilizing of biped robots in a standing position on movable support, Sci. Tech. J. Inf. Technol. Mech. Opt., 15, 3, 418 (2015)
[34] Ben-Ari, M., Mondada, F.: Robots and their applications. In: Elements of Robotics. Springer International Publishing, Cham, pp. 1-20 (2018)
[35] Kast, C., et al.: Development of a modular bionic prototype arm prosthesis integrating a closed-loop control system. In: Lhotska, L., Sukupova, L., Lacković, I., Ibbott, G.S. (eds.) World Congress on Medical Physics and Biomedical Engineering 2018, vol. 68/2. Springer, Singapore, pp. 751-753 (2019)
[36] Liu, Y.-J., Gong, M., Tong, S., Chen, C.L.P., Li, D.-J.: Adaptive fuzzy output feedback control for a class of nonlinear systems with full state constraints. IEEE Trans. Fuzzy Syst., pp. 1-1 (2018)
[37] Rinehart, J.; Ma, M.; Calderon, M-D; Cannesson, M., Feasibility of automated titration of vasopressor infusions using a novel closed-loop controller, J. Clin. Monit. Comput., 32, 1, 5-11 (2018) · doi:10.1007/s10877-017-9981-6
[38] Melendez, A., Castillo, O., Alanis, A., Soria, J.: Reactive and tracking control of a mobile robot in a distributed environment using fuzzy logic, pp. 1-5 (2010)
[39] Navabi, H.; Sadeghnejad, S.; Ramezani, S.; Baltes, J., Position control of the single spherical wheel mobile robot by using the fuzzy sliding mode controller, Adv. Fuzzy Syst., 2017, 1-10 (2017) · doi:10.1155/2017/2651976
[40] Peraza, C.; Valdez, F.; Melin, P., Optimization of intelligent controllers using a type-1 and interval type-2 fuzzy harmony search algorithm, Algorithms, 10, 3, 82 (2017) · Zbl 1461.90204 · doi:10.3390/a10030082
[41] Caraveo, C., Valdez, F., Castillo, O.: A new optimization meta-heuristic algorithm based on self-defense mechanism of the plants with three reproduction operators. Soft Comput. (2018)
[42] Peraza, C.; Valdez, F.; Garcia, M.; Melin, P.; Castillo, O., A new fuzzy harmony search algorithm using fuzzy logic for dynamic parameter adaptation, Algorithms, 9, 4, 69 (2016) · Zbl 1461.90192 · doi:10.3390/a9040069
[43] Peraza, C.; Valdez, F.; Castro, JR; Castillo, O., Fuzzy dynamic parameter adaptation in the harmony search algorithm for the optimization of the ball and beam controller, Adv. Oper. Res., 2018, 1-16 (2018) · doi:10.1155/2018/3092872
[44] Lins, A.A., de Oliveira, J.M., Rodrigues, J.J.P.C., de Albuquerque, V.H.C.: Robot-assisted therapy for rehabilitation of children with cerebral palsy—A complementary and alternative approach. Comput. Hum. Behav. (2018)
[45] Rengifo Sanchez, A.F., Segura-Quijano, F.E., Quijano, N.: An affordable set of control system laboratories using a low-cost robotic platform. IEEE ASME Trans. Mechatron. 1-1 (2018)
[46] Rodriguez-Garavito, CH; Arevalo-Castiblanco, MF; Patiño-Forero, AA; Graña, M.; López-Guede, JM; Etxaniz, O.; Herrero, Á.; Sáez, JA; Quintián, H.; Corchado, E., Implementation of a non-linear fuzzy Takagi-Sugeno controller applied to a mobile inverted pendulum, International Joint Conference SOCO’18-CISIS’18-ICEUTE’18, 344-353 (2019), Cham: Springer International Publishing, Cham · doi:10.1007/978-3-319-94120-2_33
[47] Bobtsov, AA, Using of LEGO Mindstorms NXT technology for teaching of basics of adaptive control theory, IFAC Proc., 44, 1, 9818-9823 (2011) · doi:10.3182/20110828-6-IT-1002.02364
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.