×

Nonlinear postural control paradigm for larger perturbations in the presence of neural delays. (English) Zbl 1471.92036

Summary: Maintaining balance is an essential skill regulated by the central nervous system (CNS) that helps humans to function effectively. Developing a physiologically motivated computational model of a neural controller with good performance is a central component for a large range of potential applications, such as the development of therapeutic and assistive devices, diagnosis of balance disorders, and designing robotic control systems. In this paper, we characterize the biomechanics of postural control system by considering the musculoskeletal dynamics in the sagittal plane, proprioceptive feedback, and a neural controller. The model includes several physiological structures, such as the feedforward and feedback mechanism, sensory noise, and proprioceptive feedback delays. A high-gain observer (HGO)-based feedback linearization controller represents the CNS analog in the modeling paradigm. The HGO gives an estimation of delayed states and the feedback linearization control law generates the feedback torques at joints to execute postural recovery movements. The whole scheme is simulated in MATLAB/Simulink. The simulation results show that our proposed scheme is robust against larger perturbations, sensory noises, feedback delays and retains a strong disturbance rejection and trajectory tracking capability. Overall, these results demonstrate that the nonlinear system dynamics, the feedforward and feedback mechanism, and physiological latencies play a key role in shaping the motor control process.

MSC:

92B20 Neural networks for/in biological studies, artificial life and related topics
92C10 Biomechanics
93B52 Feedback control

Software:

Simulink
Full Text: DOI

References:

[1] Alexandrov, AV; Frolov, AA; Horak, F.; Carlson-Kuhta, P.; Park, S., Feedback equilibrium control during human standing, Biol Cybern, 93, 5, 309-322 (2005) · Zbl 1129.92006 · doi:10.1007/s00422-005-0004-1
[2] Barin, K., Evaluation of a generalized model of human postural dynamics and control in the sagittal plane, Biol Cybern, 61, 1, 37-50 (1989) · doi:10.1007/BF00204758
[3] Chiba, R.; Takakusaki, K.; Ota, J.; Yozu, A.; Haga, N., Human upright posture control models based on multisensory inputs; in fast and slow dynamics, Neurosci Res, 104, 96-104 (2016) · doi:10.1016/j.neures.2015.12.002
[4] Coelho, DB; Duarte, M., Human postural control during standing posture with a muscle-tendon actuator, Int J Exp Comput Biomech, 2, 4, 343-358 (2014) · doi:10.1504/IJECB.2014.066090
[5] Doyle, JC; Glover, K.; Khargonekar, PP; Francis, BA, State-space solutions to standard H/sub 2/and H/sub infinity/control problems, IEEE Trans Autom Control, 34, 8, 831-847 (1989) · Zbl 0698.93031 · doi:10.1109/9.29425
[6] Hwang, S.; Tae, K.; Sohn, R.; Kim, J.; Son, J.; Kim, Y., The balance recovery mechanisms against unexpected forward perturbation, Ann Biomed Eng, 37, 8, 1629-1637 (2009) · doi:10.1007/s10439-009-9717-y
[7] Iqbal, J.; Ullah, M.; Khan, SG; Khelifa, B.; Ćuković, S., Nonlinear control systems-A brief overview of historical and recent advances, Nonlinear Eng, 6, 4, 301-312 (2017) · doi:10.1515/nleng-2016-0077
[8] Iqbal, K., Optimal time-varying postural control in a single-link neuromechanical model with feedback latencies, Biol Cybern, 114, 4, 485-497 (2020) · Zbl 1457.92010 · doi:10.1007/s00422-020-00843-9
[9] Iqbal K, Mughal AM Active control vs. passive stiffness in posture and movement coordination. In: 2007 IEEE International Conference on Systems, Man and Cybernetics, 2007, pp 3367-3372. doi:10.1109/ICSMC.2007.4414105
[10] Iqbal, K.; Pai, Y-C, Predicted region of stability for balance recovery: motion at the knee joint can improve termination of forward movement, J Biomech, 33, 12, 1619-1627 (2000) · doi:10.1016/s0021-9290(00)00129-9
[11] Iqbal, K.; Roy, A., A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model, J Biomech Eng (2009) · doi:10.1115/1.3002763
[12] Iqbal, K.; Roy, A., Stabilizing PID controllers for a single-link biomechanical model with position, velocity, and force feedback, J Biomech Eng, 126, 6, 838-843 (2004) · doi:10.1115/1.1824134
[13] Ishida, A.; Imai, S.; Fukuoka, Y., Analysis of the posture control system under fixed and sway-referenced support conditions, IEEE Trans Biomed Eng, 44, 5, 331-336 (1997) · doi:10.1109/10.568908
[14] Ivanenko, Y.; Gurfinkel, VS, Human postural control, Front Neurosci, 12, 171 (2018) · doi:10.3389/fnins.2018.00171
[15] Jafari H, Nikolakopoulos G, Gustafsson T Stabilization of an inverted pendulum via human brain inspired controller design. In: 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids), 2019, pp 433-438. doi:10.1109/Humanoids43949.2019.9035019
[16] Jeka J, Kiemel T (2009) Modeling of human postural control. In: Encyclopedia of Neuroscience. Springer Berlin Heidelberg, pp 2381-2384. doi:10.1007/978-3-540-29678-2_3534
[17] Jiang, P.; Chiba, R.; Takakusaki, K.; Ota, J., Generation of the human biped stance by a neural controller able to compensate neurological time delay, PLoS ONE, 11, 9 (2016) · doi:10.1371/journal.pone.0163212
[18] Khalil, HK, High-gain observers in nonlinear feedback control, SIAM (2017) · Zbl 1380.93002 · doi:10.1137/1.9781611974867.ch3
[19] Khalil, HK; Grizzle, JW, Nonlinear systems (2002), Upper Saddle River: Prentice Hall, Upper Saddle River · Zbl 1003.34002
[20] Kiemel, T.; Oie, KS; Jeka, JJ, Multisensory fusion and the stochastic structure of postural sway, Biol Cybern, 87, 4, 262-277 (2002) · Zbl 1105.91327 · doi:10.1007/s00422-002-0333-2
[21] Kuo, AD, An optimal state estimation model of sensory integration in human postural balance, J Neural Eng, 2, 3, S235 (2005) · doi:10.1088/1741-2560/2/3/S07
[22] Le Mouel, C.; Brette, R., Anticipatory coadaptation of ankle stiffness and sensorimotor gain for standing balance, PLoS Comput Biol, 15, 11 (2019) · doi:10.1371/journal.pcbi.1007463
[23] Lei, J.; Khalil, HK, Feedback linearization for nonlinear systems with time-varying input and output delays by using high-gain predictors, IEEE Trans Autom Control, 61, 8, 2262-2268 (2015) · Zbl 1359.93107 · doi:10.1109/TAC.2015.2491719
[24] Lei, J.; Khalil, HK, High-gain-predictor-based output feedback control for time-delay nonlinear systems, Automatica, 71, 324-333 (2016) · Zbl 1343.93041 · doi:10.1016/j.automatica.2016.05.026
[25] Lei J, Khalil HK (2016b) Robustness of high-gain-observer-based controllers to time delays. In: 2016 American Control Conference (ACC). IEEE, pp 967-972. doi:10.1109/ACC.2016.7525040
[26] Levine, WS, Control system fundamentals (1999), Boca Raton: CRC Press, Boca Raton · doi:10.1201/9781315214030
[27] Mergner, T.; Peterka, RJ; Goswami, A.; Vadakkepat, P., Human sense of balance, Humanoid robotics: a reference, 1-38 (2016), Dordrecht: Springer, Dordrecht · doi:10.1007/978-94-007-7194-9_37-1
[28] Mughal A, Iqbal K (2005) A fuzzy biomechanical model for optimal control of sit-to-stand movement. In: 2005 ICSC congress on computational intelligence methods and applications, 2005. IEEE, p 6
[29] Mughal, AM, Real time modeling, simulation and control of dynamical systems (2016), Berlin: Springer, Berlin · doi:10.1007/978-3-319-33906-1
[30] Mughal AM, Iqbal K Synthesis of angular profiles for bipedal sit-to-stand movement. In: 2008 40th southeastern symposium on system theory (SSST), 2008. IEEE, pp 293-297. doi:10.1109/SSST.2008.4480240
[31] Mughal, AM; Iqbal, K., Physiological LQR design for postural control coordination of sit-to-stand movement, Cogn Comput, 4, 4, 549-562 (2012) · doi:10.1007/s12559-012-9160-5
[32] Mughal, AM; Iqbal, K., Optimization of biomechanical sts movement with linear matrix inequalities, Mechatron Syst Control, 47, 1-11 (2019) · doi:10.2316/J.2019.201-2753
[33] Peterka, R., Sensorimotor integration in human postural control, J Neurophysiol, 88, 3, 1097-1118 (2002) · doi:10.1152/jn.2002.88.3.1097
[34] Peterka, RJ, Postural control model interpretation of stabilogram diffusion analysis, Biol Cybern, 82, 4, 335-343 (2000) · doi:10.1007/s004220050587
[35] Rasool G, Farooq H, Mughal AM (2010) Biomechanical sit-to-stand movement with physiological feedback latencies. In: International conference on mechanical and electronics engineering, Center for Advanced Studies in Engineering Islamabad, Pakistan, ICMEE, 2010.
[36] Rowland, BA; Quessy, S.; Stanford, TR; Stein, BE, Multisensory integration shortens physiological response latencies, J Neurosci, 27, 22, 5879-5884 (2007) · doi:10.1523/JNEUROSCI.4986-06.2007
[37] Safi K, Mohammed S, Amirat Y, Khalil M Postural stability analysis—a review of techniques and methods for human stability assessment. In: 2017 Fourth international conference on advances in biomedical engineering (ICABME), 2017. IEEE, pp 1-4. doi:10.1109/ICABME.2017.8167565
[38] Schumacher, C.; Berry, A.; Lemus, D.; Rode, C.; Seyfarth, A.; Vallery, H., Biarticular muscles are most responsive to upper-body pitch perturbations in human standing, Sci Rep, 9, 1, 1-14 (2019) · doi:10.1038/s41598-019-50995-3
[39] Sinkjaer, T.; Toft, E.; Andreassen, S.; Hornemann, BC, Muscle stiffness in human ankle dorsiflexors: intrinsic and reflex components, J Neurophysiol, 60, 1110-1121 (1988) · doi:10.1152/jn.1988.60.3.1110
[40] Sultan, N.; Najam ul Islam, M.; Mahmood Mughal, A., Nonlinear robust compensator design for postural control of a biomechanical model with delayed feedback, Meas Control, 53, 3-4, 679-690 (2020) · doi:10.1177/0020294019900285
[41] Sultan N, ul Islam MN, Mughal AM (2018) Postural control during standing posture for small perturbations with feedback linearization. In: 2018 18th international conference on mechatronics-mechatronika (ME). IEEE, pp 1-6
[42] Todorov, E., Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system, Neural Comput, 17, 1084-1108 (2005) · Zbl 1108.93082 · doi:10.1162/0899766053491887
[43] Zak, SH, Systems and control (2003), New York: Oxford University Press, New York · doi:10.1002/rnc.992
[44] Zhou, K.; Doyle, JC; Glover, K., Robust and optimal control (1996), New Jersey: Prentice Hall, New Jersey · Zbl 0999.49500
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.