×

\(\mu\)-norm and regularity. (English) Zbl 1471.81012

Summary: In the author [Proc. Steklov Inst. Math. 310, 262–290 (2020; Zbl 1453.81020); translation from Tr. Mat. Inst. Steklova 310, 280–308 (2020)] we introduce the concept of a \(\mu\)-norm for a bounded operator in a Hilbert space. The main motivation is the extension of the measure entropy to the case of quantum systems. In this paper we recall the basic results from the author [loc. cit.] and present further results on the \(\mu\)-norm. More precisely, we specify three classes of unitary operators for which the \(\mu\)-norm generates a bistochastic operator. We plan to use the latter in the construction of quantum entropy.

MSC:

81P17 Quantum entropies
47A30 Norms (inequalities, more than one norm, etc.) of linear operators
47B40 Spectral operators, decomposable operators, well-bounded operators, etc.

Citations:

Zbl 1453.81020

References:

[1] Accardi, L., Note on quantum dynamical entropies, Rep. Math. Phys., 38, 457-469 (1996) · Zbl 0885.46054 · doi:10.1016/S0034-4877(97)84895-1
[2] Accardi, L., Ohya, M., Watanabe, N.: Dynamical entropy through quantum Markov chain. Open System and Information Dynamics · Zbl 0920.46048
[3] Alicki, R.; Fannes, M., Quantum Dynamical Systems (2001), Oxford: Oxford University Press, Oxford · Zbl 1140.81308 · doi:10.1093/acprof:oso/9780198504009.001.0001
[4] Beck, C.; Graudenz, D., Symbolic dynamics of successive quantum-mechanical measurements, Phys. Rev. A, 46, 6265-6276 (1992) · doi:10.1103/PhysRevA.46.6265
[5] Connes, A., Narnhoffer, H., Thirring, W.: Commun. Math. Phys. 112, 691 (1987) · Zbl 0637.46073
[6] Downarowicz, T.; Frej, B., Measure-theoretic and topological entropy of operators on function spaces, Ergod. Theory. Dyn. Syst., 25, 455-481 (2005) · Zbl 1088.47006 · doi:10.1017/S014338570400032X
[7] Downarowicz, T., Frej, B.: Doubly stochastic operators with zero entropy. arXiv:1803.07882v1 [math.DS] 21 Mar (2018) · Zbl 1013.37004
[8] Katok, A.; Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems (1995), Cambridge: Cambridge University Press, Cambridge · Zbl 0878.58020 · doi:10.1017/CBO9780511809187
[9] Kollár, B.; Koniorczyk, M., Entropy rate of message sources driven by quantum walks, Phys. Rev. A, 89, 022338 (2014) · doi:10.1103/PhysRevA.89.022338
[10] Makarov, II, Dynamical entropy for Markov operators, J. Dyn. Control Syst., 6, 1, 1-11 (2000) · Zbl 0973.37006 · doi:10.1023/A:1009595020696
[11] Ohya, M.: Quantum communications and measurement. 2, 309 (1995)
[12] Ohya, M.: Foundation of entropy, complexity and fractal in quantum systems. Internatinal congress of Probability Towards 2000 (1996)
[13] Pechukas, P., Kolmogorov entropy and quantum chaos, J. Phys. Chem., 86, 2239-2243 (1982) · doi:10.1021/j100209a019
[14] Srinivas, MD, Quantum generalization of Kolmogorov entropy, J. Math. Phys., 19, 1952-1961 (1978) · Zbl 0414.60097 · doi:10.1063/1.523916
[15] Treschev, D., \( \mu \)-Norm of an operator, Proc. Steklov Math. Inst., 310, 262-290 (2020) · Zbl 1453.81020 · doi:10.1134/S008154382005020X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.