×

Non asymptotic controls on a recursive superquantile approximation. (English) Zbl 1471.62443

Summary: In this work, we study a new recursive stochastic algorithm for the joint estimation of quantile and superquantile of an unknown distribution. The novelty of this algorithm is to use the Cesaro averaging of the quantile estimation inside the recursive approximation of the superquantile. We provide some sharp non-asymptotic bounds on the quadratic risk of the superquantile estimator for different step size sequences. We also prove new non-asymptotic \(L^p\)-controls on the Robbins Monro algorithm for quantile estimation and its averaged version. Finally, we derive a central limit theorem of our joint procedure using the diffusion approximation point of view hidden behind our stochastic algorithm.

MSC:

62L20 Stochastic approximation
60F05 Central limit and other weak theorems
62P05 Applications of statistics to actuarial sciences and financial mathematics

References:

[1] Artzner, P., Delbaen, F., Eber, J. M. and Heath, D. (1997). Thinking Coherently. Risk 10.
[2] Artzner, P., Delbaen, F., Eber, J. M. and Heath, D. (1999). Coherent Measures of Risk. Mathematical Finance 9. · Zbl 0980.91042
[3] Bach, F. and Moulines, E. (2011). Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Machine Learning. In NIPS 451-459.
[4] Balbas, A., Balbas, B. and Heras, A. (2009). Optimal reinsurance with general risk measures involving risk measures. European Journal of Operational Research 1-29. · Zbl 1162.91394
[5] Bardou, O., Frikha, N. and Pages, G. (2009). Computing VaR and CVaR using stochastic approximation and adaptive unconstrained importance sampling. Monte Carlo Methods and Applications 15 173-210. · Zbl 1185.91091
[6] Ben-Tal, A. and Teboulle, M. (1986). Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming. Management Science 32 1445-1466. · Zbl 0625.90064
[7] Benaïm, M. (1999). Dynamics of stochastic approximation algorithms. In Séminaire de probabilités XXXIII 1-68. Springer. · Zbl 0955.62085
[8] Benveniste, A., Métivier, M. and Priouret, P. (1990). Adaptive Algorithms and Stochastic Approximations. Springer-Verlag, Berlin, New-York, Stochastic Modelling and Applied Probability. · Zbl 0752.93073
[9] Bercu, B., Costa, M. and Gadat, S. (2021). Stochastic estimation algorithm for superquantile estimation. Electronic Journal of Probability, to appear. · Zbl 1469.62323
[10] Beutner, E. and Zähle, H. (2010). A modified functional delta method and its application to the estimation of risk functionals. Journal of Multivariate Analysis 101. · Zbl 1213.62055
[11] Billingsley, P. (1995). Convergence of Probability Measures. Wiley series in Probability & Statistics, New York.
[12] Borkar, V. S. (1997). Stochastic approximation with two time scales. Systems Control Lett. 29. · Zbl 0895.62085
[13] Britten-Jones, M. and Schaefer, S. M. (1999). Non linear Value-at-Risk. European Finance Review 2.
[14] Cardot, H., Cénac, P. and Godichon-Baggioni, A. (2017). Online estimation of the geometric median in Hilbert spaces: Nonasymptotic confidence balls. The Annals of Statistics 45 591-614. · Zbl 1371.62027 · doi:10.1214/16-AOS1460
[15] Cardot, H., Cenac, P. and Zitt, P. A. (2013). Efficient and fast estimation of the geometric median in Hilbert spaces with an averaged stochastic gradient algorithm. Bernoulli 19 18-43. · Zbl 1259.62068
[16] Chernozhukov, V. and Umantsev, L. (2001). Conditional value-at-risk: Aspects of modeling and esti- mation. Empirical Economics 26.
[17] De Haan, L. and Ferreira, A. (2006). Extreme Value Theory, An Introduction. Springer Series in Operations Research and Financial Engineering. · Zbl 1101.62002
[18] Delbaen, F. (2009). Risk measures for non-integrable random variables. Mathematical Finance 19 329-333. · Zbl 1168.91461
[19] Duffie, D. and Pan, J. (2001). Analytical Value-At-Risk with Jumps and Credit Risk. Finance and Stochastics 5. · Zbl 0993.91016
[20] Duflo, M. (1997). Random iterative models. Applications of Mathematics (New York) 34. Springer-Verlag, Berlin. · Zbl 0868.62069
[21] Embrechts, P. (1999). Extreme Value Theory as a Risk Management Tool. North American Actuarial Journal 3.
[22] Embrechts, P., Neslehova, J. and Wuthrich, M. (2009). Additivity properties for Value-at-Risk under Archimedean dependence and heavy-tailedness. Insurance: Mathematics and Economics 44 164-169. · Zbl 1163.91431
[23] Gadat, S. and Panloup, F. (2020). Optimal non-asymptotic bound of the Ruppert-Polyak averaging without strong convexity.
[24] Gadat, S., Panloup, F. and Saadane, S. (2018). Stochastic heavy ball. Electronic Journal of Statistics 461-529. · Zbl 1392.62244
[25] Godichon, A. (2015). Estimating the geometric median in Hilbert spaces with stochastic gradient algorithms: Lp and almost sure rates of convergence. Journal of Multivariate Analysis 209-222. · Zbl 1337.62053
[26] Hall, P. and Yao, Q. (2003). Inference in ARCH and GARCH models with heavy-tailed errors. Econometrica 71. · Zbl 1136.62368
[27] Konda, V. R. and Tsitsiklis, J. N. (2004). Convergence rate of linear two-time-scale stochastic approximation. The Annals of Applied Probability 14. · Zbl 1094.62103
[28] Kushner, H. J. and Yin, G. (2003). Stochastic approximation and recursive algorithms and applications 35. Springer Verlag. · Zbl 1026.62084
[29] Labopin-Richard, T., Gamboa, F., Garivier, A. and Iooss, B. (2016). Bregman superquantiles. Estimation methods and applications. Dependence Modeling 4. · Zbl 1348.62076
[30] Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business 26 394-419.
[31] Métivier, M. and Priouret, P. (1987). Théorèmes de convergence presque sure pour une classe d’algorithmes stochastiques à pas décroissant. Probability Theory and related fields 74 403-428. · Zbl 0588.62153
[32] Mokkadem, A. and Pelletier, M. (2006). Convergence rate and averaging of nonlinear two-time-scale stochastic approximation algorithms. The Annals of Applied Probability 16. · Zbl 1104.62095 · doi:10.1214/105051606000000448
[33] Pelletier, M. (2000). Asymptotic almost sure efficiency of averaged stochastic algorithms. SIAM, Journal on Control and Optimization 1 49-72. · Zbl 1015.60028
[34] Pflug, G. (2000). Some Remarks on the Value-at-Risk and the Conditional Value-at-Risk. In.“Probabilistic Constrained Optimization: Methodology and Applications”, Ed. S. Uryasev, Kluwer Academic Publishers. · Zbl 0994.91031
[35] Polyak, B. T. and Juditsky, A. (1992). Acceleration of Stochastic Approximation by Averaging. SIAM Journal on Control and Optimization 30 838-855. · Zbl 0762.62022
[36] Rachev, S. T. and Mittnik, S. (2000). Stable Paretian Models in Finance. John Wiley and Sons, Series in Financial Economics. · Zbl 0972.91060
[37] Rockafellar, R. T. and Uryasev, S. (2000). Optimization of Conditional Value-at-Risk. The Journal of Risk 2. · Zbl 0989.91052
[38] Rouvinez, C. (1997). Going Greek with VaR. Risk 10.
[39] Ruppert, D. (1988). Efficient estimations from a slowly convergent Robbins-Monro process. Technical Report, 781, Cornell University Operations Research and Industrial Engineering.
[40] Torossian, L., Picheny, V., Faivre, R. and Garivier, A. (2020). A review on quantile regression for stochastic computer experiments. Reliability Engineering & System Safety 201.
[41] Wang, C. S. and Zhao, Z. (2016). Conditional Value-at-Risk: Semiparametric estimation and inference. Journal of Econometrics 195 86-103. · Zbl 1443.62373
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.