×

Uniqueness among scalar-flat Kähler metrics on non-compact toric 4-manifolds. (English) Zbl 1471.53061

Asymptotically locally Euclidean (ALE for short) describes a four-dimensional Riemannian manifold with just one end which at infinity looks like the quotient space \(\mathbb R^4/\Gamma\) where \(\Gamma\) is a finite group. Donaldson generalised Taub-NUT metrics are all complete scalar-flat Kähler metrics. The author considers \(X=(X,\omega)\), a strictly unbounded sympletic toric four-manifold such that \(J\) is an almost complex structure on \(X\) compatible with \(\omega\), and states that \(\omega(\cdot,J\cdot)\), the associated Riemannian metric on \(X\), is equivariantly isometric to either the ALE toric scalar-flat Kähler metric on \(X\) or to a Donaldson generalised Taub-NUT metric.

MSC:

53C55 Global differential geometry of Hermitian and Kählerian manifolds
53D20 Momentum maps; symplectic reduction

References:

[1] M.Abreu, ‘Kähler geometry of toric varieties and extremal metrics’, Internat. J. Math.9 (1998) 641-651. · Zbl 0932.53043
[2] M.Abreu, ‘Kähler geometry of toric manifolds in symplectic coordinates’, Symplectic and contact topology: interactions and perspectives, Fields Institute Communications 35 (eds Y.Eliashberg (ed.), B.Khesin (ed.) and F.Lalonde (ed.); American Mathematical Society, Providence, RI, 2003) 1-24. · Zbl 1044.53051
[3] M.Abreu and R.Sena‐Dias, ‘Scalar‐flat Kähler metrics on non‐compact symplectic toric 4‐manifolds’, Ann. Global Anal. Geom.41 (2012) 209-239. · Zbl 1236.53058
[4] V.Apostolov, D.Calderbank, P.Gauduchon and C.Tønnesen‐Friedman, ‘Hamiltonian 2‐forms in Kähler geometry, II global classification’, J. Differential Geom.68 (2004) 277-345. · Zbl 1079.32012
[5] D.Calderbank and M.Singer, ‘Einstein metrics and complex singularities’, Invent. Math.156 (2004) 405-443. · Zbl 1061.53026
[6] S. K.Donaldson, ‘Kähler geometry on toric manifolds, and some other manifolds with large symmetry’, Handbook of geometric analysis 1, Advanced Lectures Mathematics 13-14 (eds L.Ji (ed.), P.Li (ed.), L.Simon (ed.) and R.Schoen (ed.); International Press, Somerville, MA, 2008) 29-75. · Zbl 1161.53066
[7] S. K.Donaldson, ‘A generalised Joyce construction for a family of nonlinear partial differential equations’, J. Gökova Geom. Topol.3 (2009) 1-8. · Zbl 1267.53007
[8] S. K.Donaldson, Riemann surfaces, Oxford Graduate Texts in Mathematics 22 (Oxford University Press, Oxford, 2011). · Zbl 1235.30001
[9] V.Guillemin, ‘Kaehler structures on toric varieties’, J. Differential Geom.40 (1994) 285-309. · Zbl 0813.53042
[10] D.Joyce, ‘Explicit construction of self‐dual 4‐manifolds’, Duke Math. J.77 (1995) 519-552. · Zbl 0855.57028
[11] Y.Karshon and E.Lerman, ‘Non‐compact symplectic Toric manifolds’, SIGMA Symmetry Integrability Geom. Methods Appl.11 (2009) 055. · Zbl 1328.53103
[12] C.LeBrun, ‘Explicit self‐dual metrics on \(\mathbb{CP}^2 \sharp \cdots \sharp \mathbb{CP}^2\)’, J. Differential Geom.34 (1991) 223-253. · Zbl 0725.53067
[13] R.Sena‐Dias, ‘Curvature of scalar‐flat Kähler metrics on non‐compact symplectic toric 4‐manifolds’, Differential Geom. Appl.33 (2014) 149-182. · Zbl 1328.53095
[14] B.Weber, ‘Classification of polytope metrics and complete scalar‐flat Kähler 4‐Manifolds with two symmetries’, Preprint, 2015, arXiv:1509.04585.
[15] D.Wright, ‘The geometry of anti‐self‐dual orbifolds’, PhD Thesis, Imperial College, London, 2009.
[16] D.Wright, ‘Compact anti‐self‐dual orbifolds with torus actions’, Selecta Math. (N.S.)17 (2011) 223-280. · Zbl 1245.53045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.