×

Quantitative stability for hypersurfaces with almost constant curvature in space forms. (English) Zbl 1471.53054

Summary: The Alexandrov Soap Bubble Theorem asserts that the distance spheres are the only embedded closed connected hypersurfaces in space forms having constant mean curvature. The theorem can be extended to more general functions of the principal curvatures \(f(k_1,\ldots ,k_{n-1})\) satisfying suitable conditions. In this paper, we give sharp quantitative estimates of proximity to a single sphere for Alexandrov Soap Bubble Theorem in space forms when the curvature operator \(f\) is close to a constant. Under an assumption that prevents bubbling, the proximity to a single sphere is optimally quantified in terms of the oscillation of the curvature function \(f\). Our approach provides a unified picture of quantitative studies of the method of moving planes in space forms.

MSC:

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53C30 Differential geometry of homogeneous manifolds
35B50 Maximum principles in context of PDEs
53C24 Rigidity results

References:

[1] Abresch, U.; Rosenberg, H., A Hopf differential for constant mean curvature surfaces in \(\mathbb{S}^2\times \mathbb{R}\) and \(\mathbb{H}^2\times \mathbb{R} \), Acta Math., 193, 2, 141-174 (2004) · Zbl 1078.53053 · doi:10.1007/BF02392562
[2] Alexandrov, A.D.: Uniqueness theorems for surfaces in the large II. Vestnik Leningrad Univ. 12(7), 15-44 (1957). (English translation: Amer. Math. Soc. Translations, Ser. 2, 21 (1962), 354-388.)
[3] Alexandrov, A.D.: Uniqueness theorems for surfaces in the large V. Vestnik Leningrad Univ. 13(19), 5-8 (1958). (English translation: Amer. Math. Soc. Translations, Ser. 2, 21 (1962), 412-415.) · Zbl 0119.16603
[4] Alexandrov, AD, A characteristic property of spheres, Ann. Mat. Pura Appl., 58, 303-315 (1962) · Zbl 0107.15603 · doi:10.1007/BF02413056
[5] Barbosa, JL; do Carmo, M., Stability of hypersurfaces of constant mean curvature, Math. Zeit., 185, 3, 339-353 (1984) · Zbl 0513.53002 · doi:10.1007/BF01215045
[6] Barbosa, JL; do Carmo, M.; Eschenburg, M., Stability of Hypersurfaces of constant mean curvature in Riemannian manifolds, Math. Zeit., 197, 1, 123-138 (1988) · Zbl 0653.53045 · doi:10.1007/BF01161634
[7] Berestycki, H.; Caffarelli, LA; Nirenberg, L., Inequalities for second-order elliptic equations with applications to unbounded domains I, Duke Math. J., 81, 2, 467-494 (1996) · Zbl 0860.35004 · doi:10.1215/S0012-7094-96-08117-X
[8] Bianchini, C.; Ciraolo, G.; Salani, P., An overdetermined problem for the anisotropic capacity, Calc. Var. Partial Differ. Equ., 55, 4, 55-84 (2016) · Zbl 1368.35195 · doi:10.1007/s00526-016-1011-x
[9] Brendle, S., Constant mean curvature surfaces in warped product manifolds, Publ. Math. Inst. Hautes Études Sci., 117, 247-269 (2013) · Zbl 1273.53052 · doi:10.1007/s10240-012-0047-5
[10] Cabré, X., Fall, M., Sola-Morales, J., Weth, T.: Curves and surfaces with constant nonlocal mean curvature: meeting Alexandrov and Delaunay. J. Reine Angew. Math. (Crelle’s Journal) arXiv:1503.00469 · Zbl 1431.53010
[11] Cheng, S.; Yau, S., Hypersurfaces with constant scalar curvature, Math. Ann., 225, 3, 195-204 (1977) · Zbl 0349.53041 · doi:10.1007/BF01425237
[12] Ciraolo, G.; Figalli, A.; Maggi, F.; Novaga, M., Rigidity and sharp stability estimates for hypersurfaces with constant and almost-constant nonlocal mean curvature, J. Reine Angew. Math. (Crelle’s J.), 741, 275-294 (2018) · Zbl 1411.53030 · doi:10.1515/crelle-2015-0088
[13] Ciraolo, G.; Maggi, F., On the shape of compact hypersurfaces with almost constant mean curvature, Commun. Pure Appl. Math., 70, 665-716 (2017) · Zbl 1368.53004 · doi:10.1002/cpa.21683
[14] Ciraolo, G.; Vezzoni, L., A sharp quantitative version of Alexandrov’s theorem via the method of moving planes, J. Eur. Math. Soc. (JEMS), 20, 2, 261-299 (2018) · Zbl 1397.53050 · doi:10.4171/JEMS/766
[15] Ciraolo, G., Vezzoni, L.: Quantitative stability for Hypersurfaces with almost constant mean curvature in the Hyperbolic space. Indiana Univ. Math. J. arXiv:1611.02095 (to appear) · Zbl 1447.53050
[16] Delaunay, C., Sur la surface de révolution dont la courbure moyenne est constante, J. Math. Pures. Appl., 6, 309-320 (1841)
[17] Delgadino, M., Maggi, F.: Alexandrov’s Theorem revisited. arXiv:1711.07690v2 (preprint) · Zbl 1418.35205
[18] Delgadino, M.; Maggi, F.; Mihaila, C.; Neumayer, R., Bubbling with \(L^2\)-almost constant mean curvature and an Alexandrov-type theorem for crystals, Arch. Ration. Mech. Anal., 230, 3, 1131-1177 (2018) · Zbl 1421.35076 · doi:10.1007/s00205-018-1267-8
[19] Feldman, WM, Stability of Serrin’s problem and dynamic stability of a model for contact angle motion, SIAM J. Math. Anal., 50, 3, 3303-3326 (2018) · Zbl 1394.35295 · doi:10.1137/17M1143009
[20] Gilbarg, D.; Trudinger, NS, Elliptic Partial Differential Equations of Second Order (1977), Berlin: Springer, Berlin · Zbl 0361.35003 · doi:10.1007/978-3-642-96379-7
[21] Hartman, P., On complete hypersurfaces of non negative sectional curvatures and constant \(m\)’th mean curvature, Trans. Am. Math. Soc., 245, 363-374 (1978) · Zbl 0412.53027
[22] He, YJ; Li, HZ, Integral formula of Minkowski type and new characterization of the Wulff shape, Acta Math. Sin., 24, 4, 697-704 (2008) · Zbl 1152.53047 · doi:10.1007/s10114-007-7116-6
[23] He, Y.; Li, H.; Ma, H.; Ge, J., Compact embedded hypersurfaces with constant higher order anisotropic mean curvatures, Indiana Univ. Math. J., 58, 2, 853-868 (2009) · Zbl 1166.53035 · doi:10.1512/iumj.2009.58.3515
[24] Hopf, H.: Differential Geometry in the Large. Lecture Notes in Mathematics, vol. 1000 (1989) · Zbl 0669.53001
[25] Hsiang, WY; Teng, Z-H; Yu, WC, New examples of constant mean curvature immersions of \((2k-1)\)-spheres into Euclidean \(2k\)-space, Ann. Math. (2), 117, 3, 609-625 (1983) · Zbl 0522.53052 · doi:10.2307/2007036
[26] Hsiang, WY; Yu, W., A generalization of a Theorem of Delaunay, J. Differ. Geom., 16, 161-177 (1981) · Zbl 0504.53044 · doi:10.4310/jdg/1214436094
[27] Hsiung, CC, Some integral formulas for closed hypersurfaces, Math. Scand., 2, 286-294 (1954) · Zbl 0057.14603 · doi:10.7146/math.scand.a-10415
[28] Karcher, H., Riemannian center of mass and mollifier smoothing, Commun. Pure Appl. Math., 30, 509-541 (1977) · Zbl 0354.57005 · doi:10.1002/cpa.3160300502
[29] Korevaar, NJ, Sphere theorems via Alexandrov for constant Weingarten curvature hypersurfaces—Appendix to a note of A, Ros. J. Differ. Geom., 27, 221-223 (1988) · Zbl 0638.53052
[30] Krummel, B.; Maggi, F., Isoperimetry with upper mean curvature bounds and sharp stability estimates, Calc. Var. Partial Differ. Equ., 56, 2, 53 (2017) · Zbl 1368.49054 · doi:10.1007/s00526-017-1139-3
[31] Liebmann, H., Eine neue Eigenschaft der Kugel. Nachr. Kgl. Ges. Wiss. Göttingen, Math-Phys. Klasse 44-55 (1899) · JFM 30.0557.01
[32] Magnanini, R.: Alexandrov, Serrin, Weinberger, Reilly: symmetry and stability by integral identities. In: Bruno Pini Mathematical Seminar, pp. 121-141 (2017) · Zbl 1444.35009
[33] Magnanini, R., Poggesi G.: On the stability for Alexandrov’s Soap Bubble Theorem. J. Anal. Math. arXiv:1610.07036 (to appear) · Zbl 1472.53013
[34] Magnanini, R., Poggesi, G.: Serrin’s problem and Alexandrov’s Soap Bubble Theorem: stability via integral identities. Indiana Univ. Math. J. arXiv:1708.07392 (to appear) · Zbl 1445.35257
[35] Meeks III, W.H., Mira, P., Pérez, J., Ros, A., Constant mean curvature spheres in homogeneous three-manifolds. arXiv:1706.09394 (preprint) · Zbl 1527.53051
[36] Meeks III,W.H., Mira, P., Pérez, J., Ros, A.: Constant mean curvature spheres in homogeneous three-spheres. arXiv:1308.2612 (preprint) · Zbl 1527.53051
[37] Montiel, S.; Ros, A., Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures, Pitman Monogr. Surv. Pure Appl. Math., 52, 279-296 (1991) · Zbl 0723.53032
[38] Qiu, G.; Xia, C., A generalization of Reilly’s formula and its applications to a new Heintze-Karcher type inequality, Int. Math. Res. Not. IMRN, 17, 7608-7619 (2015) · Zbl 1330.53049 · doi:10.1093/imrn/rnu184
[39] Reilly, R., Applications of the Hessian operator in a Riemannian manifold, Indiana Univ. Math. J., 26, 459-472 (1977) · Zbl 0391.53019 · doi:10.1512/iumj.1977.26.26036
[40] Ros, A., Compact hypersurfaces with constant higher order mean curvatures, Rev. Math. Iber., 3, 447-453 (1987) · Zbl 0673.53003 · doi:10.4171/RMI/58
[41] Ros, A., Compact hypersurfaces with constant scalar curvature and a congruence theorem, J. Differ. Geom., 27, 215-220 (1988) · Zbl 0638.53051 · doi:10.4310/jdg/1214441779
[42] Rosenberg, H., Hypersurfaces of constant curvature in space forms, Bull. Sci. Math., 117, 2, 211-239 (1993) · Zbl 0787.53046
[43] Süss, W., Uber Kennzeichnungen der Kugeln und Affinsphären durch Herrn K.-P. Grotemeyer, Arch. Math. (Basel), 3, 311-313 (1952) · Zbl 0048.15502 · doi:10.1007/BF01899234
[44] Wente, HC, Counterexample to a conjecture of H. Hopf, Pac. J. Math., 121, 193-243 (1986) · Zbl 0586.53003 · doi:10.2140/pjm.1986.121.193
[45] Yau, ST, Problem Section. Seminar on Differential Geometry, 669-706 (1982), Princeton: Princeton Univ Press, Princeton · Zbl 0471.00020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.