×

\(s\)-PD-sets for codes from projective planes \(\mathrm{PG}(2,2^h)\), \(5\leq h\leq 9\). (English) Zbl 1471.51004

MacWilliams in 1964 introduced the permutation decoding, an algorithm to decode error-correcting codes. Such algorithm uses PD-sets, that is sets of the code automorphism defined with respect to a given information set of the code. Not all codes can be decoded using this method, it will depend on whether or not their automorphism codes contain PD-sets.
More precisely, consider a linear code \(C\subseteq \mathbb{F}_p^n\) which can correct at most \(t\) errors and consider \(I\) to be an information set for \(C\). A subset \(S\) of the automorphism group of \(C\) is said to be a PD-set for \(C\) if every \(t\)-set of coordinate positions can be moved by at least one element of \(S\) out of the information set \(I\). For \(s\leq t\), an \(s\)-PD-set is a set \(S\) of the automorphism group of \(C\) such that every \(s\)-set of coordinate positions can be moved by at least one element of \(S\) out of the information set \(I\).
In this paper, the authors construct \(s\)-PD-sets with \(s \in \{2,3\}\) for the linear codes arising from the incidence matrices of points and lines of \(\mathrm{PG}(2,q)\), for \(q=2^h\) and \(h \in \{5,6,7,8,9\}\). They use a special basis for these codes which was found by P. Vandendriessche [Finite Fields Appl. 17, No. 6, 521–531 (2011; Zbl 1248.05026)].

MSC:

51E22 Linear codes and caps in Galois spaces
51E20 Combinatorial structures in finite projective spaces
51A30 Desarguesian and Pappian geometries

Citations:

Zbl 1248.05026
Full Text: DOI

References:

[1] D. Crnković; N. Mostarac, PD-sets for codes related to flag-transitive symmetric designs, Trans. Comb., 7, 37-50 (2018) · Zbl 1463.05026 · doi:10.22108/toc.2017.21615
[2] D. M. Gordon, Minimal permutation sets for decoding the binary Golay codes, IEEE Trans. Inform. Theory, 28, 541-543 (1982) · Zbl 0479.94021 · doi:10.1109/TIT.1982.1056504
[3] J. W. P. Hirschfeld, Projective Geometries Over Finite Fields, 2^nd edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. · Zbl 0899.51002
[4] W. C. Huffman, Codes and groups, Handbook of Coding Theory, North-Holland, Amsterdam, 1, 2, 1345-1440 (1998) · Zbl 0926.94039
[5] J. D. Key, Permutation decoding for codes from designs, finite geometries and graphs, Information Security, Coding Theory and Related Combinatorics, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., IOS, Amsterdam, 29, 172-201 (2011) · Zbl 1366.94705
[6] J. D. Key; T. P. McDonough; V. C. Mavron, Partial permutation decoding for codes from finite planes, European J. Combin., 26, 665-682 (2005) · Zbl 1074.94014 · doi:10.1016/j.ejc.2004.04.007
[7] J. MacWilliams, Permutation decoding of systematic codes, Bell Syst. Tech. J., 43, 485-505 (1964) · Zbl 0116.35304 · doi:10.1002/j.1538-7305.1964.tb04075.x
[8] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes. II, North-Holland Mathematical Library, Vol. 16. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. · Zbl 0369.94008
[9] G. E. Moorhouse, Bruck nets, codes, and characters of loops, Des. Codes Cryptogr., 1, 7-29 (1991) · Zbl 0755.05020 · doi:10.1007/BF00123956
[10] N. Pace; A. Sonnino, On linear codes admitting large automorphism groups, Des. Codes Cryptogr., 83, 115-143 (2017) · Zbl 1368.51011 · doi:10.1007/s10623-016-0207-6
[11] K. J. C. Smith, On the \(p\)-rank of the incidence matrix of points in hyperplanes in a finite projective geometry, J. Combin. Theory, 7, 122-129 (1969) · Zbl 0185.24305 · doi:10.1016/S0021-9800(69)80046-3
[12] P. Vandendriessche, Codes of Desarguesian projective planes of even order, projective triads and \((q + t, t)\)-arcs of type \((0, 2, t)\), Finite Fields Appl., 17, 521-531 (2011) · Zbl 1248.05026 · doi:10.1016/j.ffa.2011.03.003
[13] P. Vandendriessche, Intertwined Results on Linear Codes and Galois Geometries, Ph.D thesis, Ghent University, Faculty of Sciences, Ghent, Belgium, 2014. https://cage.ugent.be/geometry/theses.php.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.