×

Impulsive fractional semilinear integrodifferential equations with nonlocal conditions. (English) Zbl 1471.45007

Summary: This paper is devoted to a class of impulsive fractional semilinear integrodifferential equations with nonlocal initial conditions. Based on the semigroup theory and some fixed point theorems, the existence theory of PC-mild solutions is established under the condition of compact resolvent operator. Furthermore, the uniqueness of PC-mild solutions is proved in the case of the noncompact resolvent operator.

MSC:

45J05 Integro-ordinary differential equations
34K37 Functional-differential equations with fractional derivatives
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
26A33 Fractional derivatives and integrals

References:

[1] Li, H.; Kao, Y., Mittag-Leffler stability for a new coupled system of fractional-order differential equations with impulses, Applied Mathematics and Computation, 361, 22-31 (2019) · Zbl 1428.34015 · doi:10.1016/j.amc.2019.05.018
[2] Chadha, A.; Pandey, D. N., Existence results for an impulsive neutral stochastic fractional integro- differential equation with infinite delay, Nonlinear Analysis, 128, 149-175 (2015) · Zbl 1328.34074 · doi:10.1016/j.na.2015.07.018
[3] Arthi, G.; Park, J. H.; Jung, H. Y., Existence and exponential stability for neutral stochastic integrodifferential equations with impulses driven by a fractional Brownian motion, Communications in Nonlinear Science and Numerical Simulation, 32, 145-157 (2016) · Zbl 1510.60045 · doi:10.1016/j.cnsns.2015.08.014
[4] Chauhan, A.; Dabas, J., Local and global existence of mild solution to an impulsive fractional functional integro-differential equation with nonlocal condition, Communications in Nonlinear Science and Numerical Simulation, 19, 4, 821-829 (2014) · Zbl 1457.45004 · doi:10.1016/j.cnsns.2013.07.025
[5] Yan, Z.; Lu, F., Approximate controllability of a multi-valued fractional impulsive stochastic partial integro-differential equation with infinite delay, Applied Mathematics and Computation, 292, 425-447 (2017) · Zbl 1410.93026 · doi:10.1016/j.amc.2016.06.035
[6] Liu, Y., Piecewise continuous solutions of initial value problems of singular fractional differential equations with impulse effects, Acta Mathematica Scientia, 36, 5, 1492-1508 (2016) · Zbl 1374.34014 · doi:10.1016/s0252-9602(16)30085-6
[7] Ge, F. D.; Zhou, H. C.; Kou, C. H., Approximate controllability of semilinear evolution equations of fractional order with nonlocal and impulsive conditions via an approximating technique, Applied Mathematics and Computation, 275, 107-120 (2016) · Zbl 1410.93021 · doi:10.1016/j.amc.2015.11.056
[8] Chen, P.; Zhang, X.; Li, Y., Approximate controllability of non-autonomous evolution system with nonlocal conditions, Journal of Dynamical and Control Systems, 26, 1, 1-16 (2020) · Zbl 1439.34065 · doi:10.1007/s10883-018-9423-x
[9] Chen, P.; Zhang, X.; Li, Y., Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operators, Fractional Calculus and Applied Analysis, 23, 1, 268-291 (2020) · Zbl 1441.34006 · doi:10.1515/fca-2020-0011
[10] Agarwal, R.; Baleanu, D.; Nieto, J. J.; Torres, D. F. M.; Zhou, Y., A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, Journal of Computational and Applied Mathematics, 339, 3-29 (2018) · Zbl 1388.34005 · doi:10.1016/j.cam.2017.09.039
[11] Shu, X.; Wang, Q., The existence and uniqueness of mild solutions for fractional differential equations with nonlocal conditions of order \(1<\beta<2\), Computers and Mathematics with Applications, 64, 6, 2100-2110 (2012) · Zbl 1268.34155 · doi:10.1016/j.camwa.2012.04.006
[12] Chen, P.; Zhang, X.; Li, Y., Fractional non-autonomous evolution equation with nonlocal conditions, Journal of Pseudo-Differential Operators and Applications, 10, 4, 955-973 (2019) · Zbl 1427.34006 · doi:10.1007/s11868-018-0257-9
[13] Chen, P.; Zhang, X., Non-autonomous stochastic evolution equations of parabolic type with nonlocal initial conditions, Discrete & Continuous Dynamical Systems - B, 26, 9, 4681-4695 (2021) · Zbl 1471.34119 · doi:10.3934/dcdsb.2020308
[14] Ji, S.; Li, G., A unified approach to nonlocal impulsive differential equations with the measure of noncompactness, Advances in Difference Equations, 2012, 1 (2012) · Zbl 1377.34026 · doi:10.1186/1687-1847-2012-182
[15] Zhu, B.; Han, B.; Liu, L., Existence of mild solutions for a class of fractional semilinear integro-differential equation of mixed type, Acta Mathematica Scientia, 39A, 1334-1341 (2019) · Zbl 1449.34277
[16] Gou, H.; Li, B., Local and global existence of mild solution to impulsive fractional semilinear integro-differential equation with noncompact semigroup, Communications in Nonlinear Science and Numerical Simulation, 42, 204-214 (2017) · Zbl 1473.34046 · doi:10.1016/j.cnsns.2016.05.021
[17] Liu, L.; Guo, F.; Wu, C.; Wu, Y., Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces, Journal of Mathematical Analysis and Applications, 309, 2, 638-649 (2005) · Zbl 1080.45005 · doi:10.1016/j.jmaa.2004.10.069
[18] Samko, S.; Kilbas, A.; Marichev, O., Fractional Integrals and Derivatives: Theory and Applications (1993), Amsterdam: Gordon and Breach, Amsterdam · Zbl 0818.26003
[19] Caputo, M., Linear models of dissipation whose q is almost frequency independent-II, Journal of the Royal Astronomical Society, 13, 5, 529-539 (1967) · doi:10.1111/j.1365-246X.1967.tb02303.x
[20] Araya, D.; Lizama, C., Almost automorphic mild solutions to fractional differential equations, Nonlinear Analysis, 69, 11, 3692-3705 (2008) · Zbl 1166.34033 · doi:10.1016/j.na.2007.10.004
[21] Debbouche, A.; Baleanu, D., Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems, Computers and Mathematics with Applications, 62, 3, 1442-1450 (2011) · Zbl 1228.45013 · doi:10.1016/j.camwa.2011.03.075
[22] Lizama, C.; Pereira, A.; Ponce, R., On the compactness of fractional resolvent operator functions, Semigroup Forum, 93, 2, 363-374 (2016) · Zbl 1359.47014 · doi:10.1007/s00233-016-9788-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.