×

Mean dimension and an embedding theorem for real flows. (English) Zbl 1471.37029

The notion of mean dimension was introduced by M. Gromov [Math. Phys. Anal. Geom. 2, No. 4, 323–415 (1999; Zbl 1160.37322)] as a topological invariant of dynamical systems to characterize systems with infinite topological entropies, and was systematically studied in [E. Lindenstrauss and B. Weiss, Isr. J. Math. 115, 1–24 (2000; Zbl 0978.54026); E. Lindenstrauss, Publ. Math., Inst. Hautes Étud. Sci. 89, 227–262 (1999; Zbl 0978.54027)].
In this paper, the authors introduce the notion of mean dimension for real flows, study its basic properties, and prove the following embedding theorem.
Theorem. Any real flow \((X, \mathbb R)\) of mean dimension strictly less than \(r\) admits an extension \((Y, \mathbb R)\) whose mean dimension is equal to the mean dimension of \((X, \mathbb R)\) and such that \((Y, \mathbb R)\) can be embedded in the \(\mathbb R\)-shift on the compact function space \(\{ f\in C(\mathbb R, [-1, 1]):\ \mathrm{supp}(\hat{f})\subset [-r, r]\), where \(\hat{f}\) is the Fourier transform of \(f\) considered as a tempered distribution.
Reviewer: Lin Shu (Beijing)

MSC:

37C45 Dimension theory of smooth dynamical systems
37B40 Topological entropy
37C10 Dynamics induced by flows and semiflows
37C85 Dynamics induced by group actions other than \(\mathbb{Z}\) and \(\mathbb{R}\), and \(\mathbb{C}\)
37B02 Dynamics in general topological spaces
54C25 Embedding

References:

[1] J. Auslander,Minimal Flows and Their Extensions, North-Holland, Amsterdam, Elsevier, 1988. · Zbl 0654.54027
[2] L. Carleson et al. (eds.),Collected Works of Arne Beurling, Vol. 2, Harmonic Analysis, Birkhäuser, Boston, 1989. · Zbl 0732.01042
[3] R. Bowen and P. Walters,Expansive one-parameter flows, J. Differential Equations 12 (1972), 180-193. · Zbl 0242.54041
[4] M. Brin and G. Stuck,Introduction to Dynamical Systems, Cambridge Univ. Press, 2002. · Zbl 1314.37002
[5] Ó. Ciaurri,Euler’s product expansion for the sine: an elementary proof, Amer. Math. Monthly 122 (2015), 693-695. · Zbl 1344.40003
[6] H. Dym and H. P. McKean,Fourier Series and Integrals, Academic Press, New York, 1972. · Zbl 0242.42001
[7] R. Gordon,The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Grad. Stud. in Math. 4, Amer. Math. Soc., 1994. · Zbl 0807.26004
[8] M. Gromov,Topological invariants of dynamical systems and spaces of holomorphic maps: I, Math. Phys. Anal. Geom. 2 (1999), 323-415. · Zbl 1160.37322
[9] Y. Gutman,Embedding topological dynamical systems with periodic points in cubical shifts, Ergodic Theory Dynam. Systems, 37 (2017), 512-538. · Zbl 1435.37034
[10] Y. Gutman,EmbeddingZk-actions in cubical shifts andZk-symbolic extensions, Ergodic Theory Dynam. Systems. 31 (2011), 383-403. · Zbl 1218.37013
[11] Y. Gutman,Mean dimension and Jaworski-type theorems, Proc. London Math. Soc. 111 (2015), 831-850. · Zbl 1352.37017
[12] Y. Gutman,Taken’s embedding theorem with a continuous observable, in: Ergodic Theory: Advances in Dynamical Systems, De Gruyter, Berlin, 2016, 134-142. · Zbl 1366.37058
[13] Y. Gutman, E. Lindenstrauss and M. Tsukamoto,Mean dimension ofZk-actions, Geom. Funct. Anal. 26 (2016), 778-817. · Zbl 1378.37056
[14] Y. Gutman, Y. Qiao and G. Szabó,The embedding problem in topological dynamics and Takens’ theorem, Nonlinearity 31 (2018), 597-620. · Zbl 1384.37034
[15] Y. Gutman, Y. Qiao and M. Tsukamoto,Application of signal analysis to the embedding problem ofZk-actions, Geom. Funct. Anal. 29 (2019), 1440-1502. · Zbl 1427.37013
[16] Y. Gutman and M. Tsukamoto,Mean dimension and a sharp embedding theorem: extensions of aperiodic subshifts, Ergodic Theory Dynam. Systems 34 (2014), 1888-1896. · Zbl 1316.37012
[17] B. Hasselblatt and A. Katok,A First Course in Dynamics with a Panorama of Recent Developments, Cambridge Univ. Press, New York, 2003. · Zbl 1027.37001
[18] A. Jaworski, Ph.D. thesis, Univ. of Maryland, 1974.
[19] S. Kakutani,A proof of Beboutov’s theorem, J. Differential Equations 4 (1968), 194-201. · Zbl 0174.40101
[20] K. Knopp,Theory and Application of Infinite Series, Blackie and Son, London, 1951. · Zbl 0042.29203
[21] E. Lindenstrauss,Mean dimension, small entropy factors and an embedding theorem, Inst. Hautes Études Sci. Publ. Math. 89 (1999), 227-262. · Zbl 0978.54027
[22] E. Lindenstrauss and M. Tsukamoto,Mean dimension and an embedding problem: an example, Israel J. Math. 199 (2014), 573-584. · Zbl 1301.37011
[23] E. Lindenstrauss and B. Weiss,Mean topological dimension, Israel J. Math. 115 (2000), 1-24. · Zbl 0978.54026
[24] S. Mandelbrojt,Dirichlet Series. Principles and Methods, Reidel, Dordrecht, 1972. · Zbl 0241.30010
[25] J. Munkres,Topology, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 2000. · Zbl 0951.54001
[26] V. V. Nemytskii and V. V. Stepanov,Qualitative Theory of Differential Equations, Princeton Univ. Press, 1960. · Zbl 0089.29502
[27] W. Rudin,Real and Complex Analysis, McGraw-Hill, 1987. · Zbl 0925.00005
[28] L. Schwartz,Théorie des distributions, Hermann, Paris, 1966. · Zbl 0149.09501
[29] R. S. Strichartz,A Guide to Distribution Theory and Fourier Transforms, World Sci., 2003. · Zbl 1029.46039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.