×

Equiconvergence of spectral decompositions for Sturm-Liouville operators: triples of Lebesgue spaces. (English) Zbl 1471.34052

Summary: The paper deals with the Sturm-Liouville operator generated on the finite interval \([0,\pi]\) by the differential expression \(-y''+q(x)y\), where \(q=u'\), \(u\in L_{\varkappa}[0,\pi]\) for some \(\varkappa\geq 2\), and arbitrary regular boundary conditions. Consider two such operators with different potentials but the same boundary conditions. We prove that the difference between spectral decompositions \(S_m^1(f)-S_m^2(f)\) of this operators tends to zero as \(m\to\infty\) for any \(f\in L_{\mu}[0,\pi]\) in the norm of the space \(L_{\nu}[0,\pi]\) if the indices satisfy the inequality \(1/\varkappa+1/\mu-1/\nu\leq 1\) (except for the case \(\varkappa=\nu=\infty, \mu=1\)). In particular, in the case of a square summable function \(u\) the uniform equiconvergence on the whole interval \([0,\pi]\) is proved for an arbitrary function \(f\in L_2[0,\pi]\)

MSC:

34B24 Sturm-Liouville theory
34L05 General spectral theory of ordinary differential operators
34L10 Eigenfunctions, eigenfunction expansions, completeness of eigenfunctions of ordinary differential operators
Full Text: DOI

References:

[1] Savchuk, A. M.; Shkalikov, A. A., Sturm-Liouville operators with singular potentials, Math. Notes, 66, 741-753 (1999) · Zbl 0968.34072 · doi:10.1007/BF02674332
[2] Hryniv, R.; Mykytuyk, Ya., Inverse spectral problem for Sturm-Liouville operators with singular potentials, Inverse Problems, 19, 665-684 (2003) · Zbl 1034.34011 · doi:10.1088/0266-5611/19/3/312
[3] R. Hryniv and Ya. Mykytuyk, ‘‘Inverse spectral problem for Sturm-Liouville operators with singular potentials,’’ Inverse Problems 19, 665-684 (2003); Math. Notes 66, 741-753 (1999).
[4] Savchuk, A. M.; Shkalikov, A. A., Sturm-Liouville operators with distributional potentials, Tr. Mosk. Mat. Obs., 64, 159-219 (2003) · Zbl 1066.34085
[5] Savchuk, A. M.; Sadovnichaya, I. V., Spectral analysis of one-dimentional Dirac system with summable potential and Sturm-Liouville operators with distribution coefficients, Sovrem. Mat. Fundam. Napravl., 66, 373-530 (2020)
[6] Dini, U., Fondamenti per la teorica delle funzioni di variabili reali (1878) · JFM 10.0274.01
[7] Steklov, W., Sur les expressions asymptotiques de certaines fonctions, definies par les equations differentielles lineaires du second ordre, et leurs applications au probleme du developpement d une fonction arbitrair, Soobs. Hark. Mat. Obs., 10, 97-200 (1907) · JFM 38.0310.02
[8] Tamarkin, Y. D., Some general problems of ordinary linear differential equations and expansion arbitrary function in series of fundamental functions, Math. Zeitschr., 27, 1-54 (1928) · JFM 53.0419.02 · doi:10.1007/BF01171084
[9] Stone, M. H., A comparison of the series of Fourier and Birkhoff, Trans. Am. Math. Soc., 28, 695-761 (1926) · JFM 52.0456.02 · doi:10.1090/S0002-9947-1926-1501372-6
[10] Ilyin, V. A., Equiconvergence, with the trigonometric series, of expansions in root functions of the one- dimensional Schrödinger operator with complex potential in the class L1, Differ. Uravn., 27, 577-597 (1991) · Zbl 0779.34065
[11] Lomov, I. S., The local convergence of biorthogonal series related to differential operators with nonsmooth coefficients. I, Differ. Equat., 37, 351-366 (2001) · Zbl 0997.34080 · doi:10.1023/A:1019242515472
[12] Minkin, A. S., Equiconvergence theorems for differential operators, J. Math. Sci., 96, 3631-3715 (1999) · Zbl 0951.47046 · doi:10.1007/BF02172664
[13] Vinokurov, V. A.; Sadovnichii, V. A., Uniform Equiconvergence of a Fourier series in Eigenfunctions of the first boundary value problem and of a trigonometric Fourier series, Dokl. Akad. Nauk, 380, 731-735 (2001) · Zbl 1066.34514
[14] Sadovnichaya, I. V., Equiconvergence of expansions in series in Eigenfunctions of Sturm-Liouville operators with distribution potentials, Mat. Sb., 201, 61-76 (2010) · Zbl 1209.34108 · doi:10.4213/sm7598
[15] Baskakov, A. G.; Derbushev, A. V.; Shcherbakov, A. O., The method of similar operators in the spectral analysis of nonselfadjoint Dirac operator with nonsmooth potential, Izv. Math., 75, 445-469 (2011) · Zbl 1219.47024 · doi:10.1070/IM2011v075n03ABEH002540
[16] Djakov, P.; Mityagin, B., Equiconvergence of spectral decompositions of 1D Dirac operators with regular boundary conditions, J. Approx. Theory, 164, 879-927 (2012) · Zbl 1258.34174 · doi:10.1016/j.jat.2012.03.013
[17] Djakov, P.; Mityagin, B., Unconditional convergence of spectral decompositions of 1D Dirac operators with regular boundary conditions, Indiana Univ. Math. J., 61, 359-398 (2012) · Zbl 1297.47047 · doi:10.1512/iumj.2012.61.4531
[18] Djakov, P.; Mityagin, B., Equiconvergence of spectral decompositions of Hill-Schrödinger operators, J. Differ. Equat., 255, 3233-3283 (2013) · Zbl 1317.47044 · doi:10.1016/j.jde.2013.07.030
[19] Sadovnichaya, I. V., Equiconvergence of spectral decompositions for the Dirac system with potential in Lebesgue spaces, Proc. Steklov Inst. Math., 293, 288-316 (2016) · Zbl 1369.34106 · doi:10.1134/S0081543816040209
[20] Nazarov, A. I.; Stolyarov, D. M.; Zatitskiy, P. B., The Tamarkin equiconvergence theorem and a first-order trace formula for regular differential operators revisited, J. Spectr. Theory, 4, 365-389 (2014) · Zbl 1311.34169 · doi:10.4171/JST/73
[21] Polyakov, D. M., Spectral properties of an even-order differential operator, Differ. Equat., 52, 1098-1103 (2016) · Zbl 1353.47088 · doi:10.1134/S0012266116080176
[22] Gomilko, A. M.; Radzievskii, G. V., Equiconvergence of series in Eigenfunctions of ordinary functional-differential operators, Dokl. Akad. Nauk SSSR, 316, 265-269 (1991)
[23] Sadovnichaya, I. V., Equiconvergence theorems for Sturm-Liouville operators with singular potentials (rate of equiconvergence in \(W_2^{\theta}\), Euras. Math. J., 1, 137-146 (2010) · Zbl 1214.34081
[24] Sadovnichaya, I. V., Equiconvergence of expansions in eigenfunctions of Sturm-Liouville operators with distributional potentials in Holder spaces, Differ. Uravn., 48, 674-685 (2012) · Zbl 1259.34086
[25] Coddington, E. A.; Levinson, N., Theory of Ordinary Differential Equations (1955), New York: McGraw-Hill, New York · Zbl 0064.33002
[26] Berg, J.; Löfström, J., Interpolation Spaces (1976), Berlin: Springer, Berlin · Zbl 0344.46071 · doi:10.1007/978-3-642-66451-9
[27] Shkalikov, A. A., On the basis problem of the eigenfunctions of an ordinary differential operator, Russ. Math. Surv., 34, 249-250 (1979) · Zbl 0471.34014 · doi:10.1070/RM1979v034n05ABEH003901
[28] G. Hardy, J. Littlewood, and G. Polya, Inequalities (Cambridge, 1934). · Zbl 0010.10703
[29] Triebel, H., Interpolation Theory (1977), Birkhäuser, Berlin: Function Spaces, Differential Operators, Birkhäuser, Berlin · Zbl 0351.46024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.