×

Representations for complex numbers with integer digits. (English) Zbl 1471.11019

The paper under review deals with a certain representation, called zeta-expansion, of complex numbers in a base \(\zeta \in \{z\in \mathbb{C} \mid z\notin \mathbb{R}\) and \(\left\vert z\right\vert >1\}.\) This representation can be considered as a complex version of the well-known beta-expansion, and is defined on the fundamental domain \(D:=\{a-b\overline{ \zeta }\mid (a,b)\in \lbrack -\varepsilon ,1-\varepsilon )^{2}\},\) where \( \varepsilon \) is fixed in \([0,1),\) for the lattice \(L:=\{k+l\overline{\zeta } \mid (k,l)\in \mathbb{Z}^{2}\},\) by the digit sequence \[ \mathbf{d}(z):=(\zeta f^{(n-1)}(z)-f^{(n)}(z))_{n\in \mathbb{N}}, \] where \(f^{(0)}(z)=z\in D,\) \(f\) \(^{(1)}(z)=\zeta z(\mathrm{mod}L)\in D\) and \(f\) \(^{(n)}(z)=f(f\) \(^{(n-1)}(z)).\) Then, \[ z=\sum_{_{n\in \mathbb{N}}}\frac{(\zeta f^{(n-1)}(z)-f^{(n)}(z))}{\zeta ^{n}} , \] and the exact shape of the digit set \(\mathcal{N}:=\cup _{z\in D}\mathbf{d} (z),\) obtained in the present manuscript, implies that \(\mathcal{N}\) is a finite subset of \(\mathbb{Z},\) and allows the author to describe the related admissible sequences. In particular, for \(\zeta \) being a multiple of certain roots of unity, these admissible sequences are described by inequalities with respect to the lexicographical order or the alternating order.
Also, the author proves that the condition \(\zeta ^{-1}D\subset D\) is sufficient to represent every complex number, in a unique way. More precisely, he shows that for each \(z\in \mathbb{C}^{\ast }\) there are an integer \(m\) and an admissible sequence \((d_{n})_{n\in \mathbb{N}},\) both uniquely determined, such that \(d_{1}\neq 0\) and \(z=\sum_{_{n\in \mathbb{N} }}d_{n}\) \(\zeta ^{-n+m}.\) Moreover, he establishes the relation with shift radix systems and discusses finiteness and periodicity properties, when \( \zeta \) is an algebraic integer.

MSC:

11A63 Radix representation; digital problems
11B85 Automata sequences
11R06 PV-numbers and generalizations; other special algebraic numbers; Mahler measure

References:

[1] Adler, R.; Kitchens, B.; Tresser, C., Dynamics of non-ergodic piecewise affine maps of the torus, Ergodic Theory Dyn. Syst., 21, 4, 959-999 (2001) · Zbl 1055.37048
[2] Akiyama, S.; Caalim, J., Invariant measure of rotational beta expansion and Tarski’s Plank problem, Discrete Comput. Geom., 57, 2, 357-370 (2017) · Zbl 1365.37003
[3] Akiyama, S.; Caalim, J., Rotational beta expansion: ergodicity and soficness, J. Math. Soc. Japan, 69, 1, 397-415 (2017) · Zbl 1379.37010
[4] Akiyama, S.; Loridant, B., Boundary parametrization of planar self-affine tiles with collinear digit set, Sci. China Math., 53, 9, 2173-2194 (2010) · Zbl 1209.28004
[5] Akiyama, S.; Scheicher, K., Symmetric shift radix systems and finite expansions, Math. Pannon., 18, 1, 101-124 (2007) · Zbl 1164.11007
[6] Akiyama, S.; Thuswaldner, JM, The topological structure of fractal tilings generated by quadratic number systems, Comput. Math. Appl., 49, 9-10, 1439-1485 (2005) · Zbl 1123.11004
[7] Akiyama, S.; Borbély, T.; Brunotte, H.; Pethő, A.; Thuswaldner, JM, Generalized radix representations and dynamical systems. I, Acta Math. Hungar., 108, 3, 207-238 (2005) · Zbl 1110.11003
[8] Arnoux, P.; Furukado, M.; Harriss, E.; Ito, S., Algebraic numbers, free group automorphisms and substitutions on the plane, Trans. Am. Math. Soc., 363, 9, 4651-4699 (2011) · Zbl 1254.37015
[9] Bertin, MJ; Zaïmi, T., Nombres de Pisot complexes dans des corps de nombres algébriques, C. R. Math. Acad. Sci. Paris, 353, 11, 965-967 (2015) · Zbl 1332.11093
[10] Bertin, MJ; Decomps-Guilloux, A.; Grandet-Hugot, M.; Pathiaux- Delefosse, M.; Schreiber, JP, Pisot and Salem numbers (1992), Basel: Birkhäuser Verlag, Basel · Zbl 0772.11041
[11] Bertrand, A.: Développements en base de Pisot et répartition modulo \(1\). C. R. Acad. Sci. Paris Sér. A-B 285(6), A419-A421 (1977) · Zbl 0362.10040
[12] Bruin, H.; Lambert, A.; Poggiaspalla, G.; Vaienti, S., Numerical analysis for a discontinuous rotation of the torus, Chaos, 13, 2, 558-571 (2003) · Zbl 1080.37558
[13] Daróczy, Z.; Kátai, I., Generalized number systems in the complex plane, Acta Math. Hung., 51, 3-4, 409-416 (1988) · Zbl 0653.10003
[14] Davies, AC, Nonlinear oscillations and chaos from digital filter overflow, Phil. Trans. R. Soc. Lond. Ser. A, 353, 1701, 85-99 (1995) · Zbl 0870.58093
[15] Dombek, D.; Masáková, Z.; Pelantová, E., Number representation using generalized \((-\beta )\)-transformation, Theor. Comput. Sci., 412, 48, 6653-6665 (2011) · Zbl 1270.11007
[16] Frougny, C., On-line finite automata for addition in some numeration systems, Theor. Inf. Appl., 33, 1, 79-101 (1999) · Zbl 0927.68052
[17] Frougny, C., Sakarovitch, J.: Number representation and finite automata. In: Combinatorics, automata, and number theory, pp. 34-107. Cambridge: Cambridge University Press (2010) · Zbl 1216.68142
[18] Frougny, C.; Solomyak, B., Finite beta-expansions, Ergodic Theory Dyn. Syst., 12, 4, 713-723 (1992) · Zbl 0814.68065
[19] Frougny, C., Surarerks, A.: On-line multiplication in real and complex base. In: Proceedings of the 16th IEEE Symposium on Computer Arithmetic (ARITH 16), pp. 212-219. IEEE Computer Society Press (2003)
[20] Frougny, C.; Pavelka, M.; Pelantova, E.; Svobodova, M., On-line algorithms for multiplication and division in real and complex numeration systems, Discrete Math. Theor. Comput. Sci., 21, 3, 26 (2019) · Zbl 1416.68210
[21] Furukado, M.; Ito, S., Complex Pisot numeration systems, Actes Rencontres CIRM, 1, 1, 41-48 (2009) · Zbl 1477.11133
[22] Garth, D., Complex Pisot numbers of small modulus, C. R. Math. Acad. Sci. Paris, 336, 12, 967-970 (2003) · Zbl 1044.11091
[23] Gilbert, WJ, Complex numbers with three radix representations, Can. J. Math., 34, 1335-1348 (1982) · Zbl 0478.10007
[24] Gilbert, WJ, Fractal geometry derived from complex bases, Math. Intell., 4, 78-86 (1982) · Zbl 0493.10010
[25] Gilbert, WJ, Complex bases and fractal similarity, Ann. sc. math. Quebec, 11, 1, 65-77 (1987) · Zbl 0633.10008
[26] Grünwald, V., Intorno all’ aritmetica dei sistemi numerici a base negativa con particolare riguardo al sistema numerico a base negativo-decimale per lo studio delle sue analogie coll’ aritmetica ordinaria (decimale), Battaglini G., 23, 203-221 (1885) · JFM 17.0120.02
[27] Hama, M.; Furukado, M.; Ito, S., Complex Pisot numeration systems, Comment. Math. Univ. St. Pauli, 58, 1, 9-49 (2009) · Zbl 1181.30001
[28] Hejda, T.; Masáková, Z.; Pelantová, E., Greedy and lazy representations in negative base systems, Kybernetika, 49, 2, 258-279 (2013) · Zbl 1275.11020
[29] Hutchinson, JE, Fractals and self-similarity, Indiana Univ. Math. J., 30, 713-747 (1981) · Zbl 0598.28011
[30] Ito, S., On the fractal curves induced from the complex radix expansion, Tokyo J. Math., 12, 300-319 (1989) · Zbl 0698.28002
[31] Ito, S.; Sadahiro, T., Beta-expansions with negative bases, Integers, 9, A22, 239-259 (2009) · Zbl 1191.11005
[32] Kalle, C.; Steiner, W., Beta-expansions, natural extensions and multiple tilings associated with Pisot units, Trans. Am. Math. Soc., 364, 5, 2281-2318 (2012) · Zbl 1295.11010
[33] Kátai, I.; Kőrnyei, I., On number systems in algebraic number fields, Publ. Math. Debrecen, 41, 3-4, 289-294 (1992) · Zbl 0784.11049
[34] Kirschenhofer, P.; Thuswaldner, JM, Shift radix systems: a survey, RIMS Kôkyûroku Bessatsu, B46, 1-59 (2014) · Zbl 1352.11014
[35] Knuth, D.E.: The art of computer programming. Vol. 2: Seminumerical algorithms. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont (1969) · Zbl 0191.18001
[36] Komornik, V.; Loreti, P., Expansions in complex bases, Can. Math. Bull., 50, 3, 399-408 (2007) · Zbl 1211.11013
[37] Kouptsov, KL; Lowenstein, JH; Vivaldi, F., Quadratic rational rotations of the torus and dual lattice maps, Nonlinearity, 15, 6, 1795-1842 (2002) · Zbl 1012.37025
[38] Kovács, B., Representation of complex numbers in number systems, Acta Math. Hung., 58, 1-2, 113-120 (1991) · Zbl 0753.11008
[39] Kovács, B.; Környei, I., On the periodicity of the radix expansion, Ann. Univ. Sci. Budapest. Sect. Comput., 13, 129-133 (1992) · Zbl 0884.11012
[40] Lidl, R.: Theory and applications of Dickson polynomials. In: Topics in polynomials of one and several variables and their applications, pp. 371-395. World Scientific Publishing, River Edge (1993) · Zbl 0857.11006
[41] Lowenstein, JH, Pseudochaotic kicked oscillators. Renormalization, symbolic dynamics, and transport (2012), Berlin: Springer, Berlin · Zbl 1295.37021
[42] Mauldin, RD; Williams, SC, Hausdorff dimension in graph directed constructions, Trans. Am. Math. Soc., 309, 2, 811-829 (1988) · Zbl 0706.28007
[43] McIlhenny, R., Ercegovac, M.: On-line algorithms for complex number arithmetic. In: Proc. 32nd Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 172-176 (1998)
[44] Nielsen, A., Muller, J.: On-line operators for complex arithmetics. In: MPCS’96 (Second International Conference on Masssively Parallel Computing Systems) (1996)
[45] Parry, W., On the \(\beta \)-expansions of real numbers, Acta Math. Acad. Sci. Hung., 11, 401-416 (1960) · Zbl 0099.28103
[46] Penney, W., A ’binary’ system for complex numbers, J. Assoc. Comput. Mach., 12, 247-248 (1965) · Zbl 0127.08803
[47] Pethő, A., On the periodic expansion of algebraic numbers, Ann. Univ. Sci. Budapest. Sect. Comput., 18, 167-174 (1999) · Zbl 0977.11006
[48] Pethő, A.; Thuswaldner, J., Number systems over orders, Monatsh. Math., 187, 4, 681-704 (2018) · Zbl 1437.11014
[49] Rényi, A., Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung., 8, 477-493 (1957) · Zbl 0079.08901
[50] Safer, T., Polygonal radix representations of complex numbers, Theor. Comput. Sci., 210, 1, 159-171 (1999) · Zbl 0912.68082
[51] Salem, R., Power series with integral coefficients, Duke Math. J., 12, 153-172 (1945) · Zbl 0060.21601
[52] Samet, PA, Algebraic integers with two conjugates outside the unit circle, Proc. Camb. Philos. Soc., 49, 421-436 (1953) · Zbl 0050.26501
[53] Scheicher, K.; Thuswaldner, JM, Canonical number systems, counting automata and fractals, Math. Proc. Camb. Phil. Soc., 133, 1, 163-182 (2002) · Zbl 1001.68070
[54] Schmidt, K., On periodic expansions of Pisot numbers and Salem numbers, Bull. Lond. Math. Soc., 12, 4, 269-278 (1980) · Zbl 0494.10040
[55] Smyth, C., Seventy years of Salem numbers, Bull. Lond. Math. Soc., 47, 3, 379-395 (2015) · Zbl 1321.11111
[56] Surer, P., \( \varepsilon \)-shift radix systems and radix representations with shifted digit sets, Publ. Math. (Debrecen), 74, 19-43 (2009) · Zbl 1192.11006
[57] Ushiki, S.: Real slice of complex Surface automorphism and complex Salem number. https://www.math.kyoto-u.ac.jp/ ushiki/papers/SurfaceSalem.pdf (2019). Accessed 10 August 2020
[58] Vieira, RS, On the number of roots of self-inversive polynomials on the complex unit circle, Ramanujan J., 42, 2, 363-369 (2017) · Zbl 1422.30013
[59] Vivaldi, F.; Lowenstein, JH, Arithmetical properties of a family of irrational piecewise rotations, Nonlinearity, 19, 5, 1069-1097 (2006) · Zbl 1100.37028
[60] Vowden, CJ; Vowden, BJ, Chaos in digital filters: identification of all periodic symbolic sequences admissible adjacent to zero, Nonlinearity, 20, 4, 975-1006 (2007) · Zbl 1124.37006
[61] Vowden, CJ; Vowden, BJ, Symmetric and non-symmetric periodic orbits for the digital filter map, Dyn. Syst., 23, 4, 437-466 (2008) · Zbl 1153.37373
[62] Zaïmi, T., On real parts of powers of complex Pisot numbers, Bull. Aust. Math. Soc., 94, 2, 245-253 (2016) · Zbl 1418.11142
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.