×

Predator avoidance and foraging for food shape synchrony and response to perturbations in trophic metacommunities. (English) Zbl 1470.92386

Summary: The response of species to perturbations strongly depends on spatial aspects in populations connected by dispersal. Asynchronous fluctuations in biomass among populations lower the risk of simultaneous local extinctions and thus reduce the regional extinction risk. However, dispersal is often seen as passive diffusion that balances species abundance between distant patches, whereas ecological constraints, such as predator avoidance or foraging for food, trigger the movement of individuals. Here, we propose a model in which dispersal rates depend on the abundance of the species interacting with the dispersing species (e.g., prey or predators) to determine how density-dependent dispersal shapes spatial synchrony in trophic metacommunities in response to stochastic perturbations. Thus, unlike those with passive dispersal, this model with density-dependent dispersal bypasses the classic vertical transmission of perturbations due to trophic interactions and deeply alters synchrony patterns. We show that the species with the highest coefficient of variation of biomass governs the dispersal rate of the dispersing species and determines the synchrony of its populations. In addition, we show that this mechanism can be modulated by the relative impact of each species on the growth rate of the dispersing species. Species affected by several constraints disperse to mitigate the strongest constraints (e.g., predation), which does not necessarily experience the highest variations due to perturbations. Our approach can disentangle the joint effects of several factors implied in dispersal and provides a more accurate description of dispersal and its consequences on metacommunity dynamics.

MSC:

92D40 Ecology
92D25 Population dynamics (general)

References:

[1] Abbott, K. C., A dispersal-induced paradox: synchrony and stability in stochastic metapopulations, Ecol. Lett., 14, 11, 1158-1169 (2011)
[2] Abrams, P. A.; Ruokolainen, L., How does adaptive consumer movement affect population dynamics in consumer-resource metacommunities with homogeneous patches?, J. Theor. Biol., 277, 1, 99-110 (2011) · Zbl 1405.92275
[3] Amarasekare, P., Spatial dynamics of foodwebs, Annu. Rev. Ecol. Evol. Syst., 39, 1, 479-500 (2008)
[4] Arnold, L., Stochastic differential equations: theory and applications (1974), Wiley: Wiley New York · Zbl 0278.60039
[5] Arnoldi, J.; Loreau, M.; Haegeman, B., Resilience, reactivity and variability: A mathematical comparison of ecological stability measures, J. Theor. Biol., 389, 47-59 (2016) · Zbl 1343.92532
[6] Arnoldi, J.; Loreau, M.; Haegeman, B., The inherent multidimensionality of temporal variability: how common and rare species shape stability patterns, Ecol. Lett., 22, 10, 1557-1567 (2019)
[7] Barbier, M.; Loreau, M., Pyramids and cascades: a synthesis of food chain functioning and stability, Ecol. Lett., 22, 2, 405-419 (2019)
[8] Bestion, E.; Cucherousset, J.; Teyssier, A.; Cote, J., Non-consumptive effects of a top-predator decrease the strength of the trophic cascade in a four-level terrestrial food web, Oikos, 124, 12, 1597-1602 (2015)
[9] Bjørnstad, O. N.; Ims, R. A.; Lambin, X., Spatial population dynamics: analyzing patterns and processes of population synchrony, Trends in Ecology & Evolution, 14, 11, 427-432 (1999)
[10] Blasius, B.; Huppert, A.; Stone, L., Complex dynamics and phase synchronization in spatially extended ecological systems, Nature, 399, 6734, 354-359 (1999)
[11] Blubaugh, C. K.; Widick, I. V.; Kaplan, I., Does fear beget fear? Risk-mediated habitat selection triggers predator avoidance at lower trophic levels, Oecologia, 185, 1, 1-11 (2017)
[12] Carpenter, S. R.; Kitchell, J. F.; Hodgson, J. R., Cascading trophic interactions and lake productivity, Bioscience, 35, 10, 634-639 (1985)
[13] Fox, J. W.; Legault, G.; Vasseur, D. A.; Einarson, J. A., Nonlinear effect of dispersal rate on spatial synchrony of predator-prey cycles, PLoS ONE, 8, 11, Article e79527 pp. (2013)
[14] French, D. R.; Travis, J. M.J., Density-dependent dispersal in host-parasitoid assemblages, Oikos, 95, 1, 125-135 (2001)
[15] Fronhofer, E. A.; Klecka, J.; Melián, C. J.; Altermatt, F., Condition-dependent movement and dispersal in experimental metacommunities, Ecol. Lett., 18, 9, 954-963 (2015)
[16] Fronhofer, E. A.; Legrand, D.; Altermatt, F.; Ansart, A.; Blanchet, S.; Bonte, D.; Chaine, A.; Dahirel, M.; De Laender, F.; De Raedt, J.; di Gesu, L.; Jacob, S.; Kaltz, O.; Laurent, E.; Little, C. J.; Madec, L.; Manzi, F.; Masier, S.; Pellerin, F.; Pennekamp, F.; Schtickzelle, N.; Therry, L.; Vong, A.; Winandy, L.; Cote, J., Bottom-up and top-down control of dispersal across major organismal groups, Nature Ecol. Evol., 2, 12, 1859-1863 (2018)
[17] Gilliam, J. F.; Fraser, D. F., Habitat selection under predation hazard: test of a model with foraging minnows, Ecology, 68, 6, 1856-1862 (1987)
[18] Goldwyn, E. E.; Hastings, A., When can dispersal synchronize populations?, Theor. Popul. Biol., 73, 3, 395-402 (2008) · Zbl 1210.92051
[19] Goldwyn, E. E.; Hastings, A., Small heterogeneity has large effects on synchronization of ecological oscillators, Bull. Math. Biol., 71, 1, 130-144 (2009) · Zbl 1169.92044
[20] Gross, T., Allhoff, K.T., Blasius, B., Brose, U., Drossel, B., Fahimipour, A.K., Guill, C., Yeakel, J.D., and Zeng, F. (2020). Modern models of trophic meta-communities. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1814):20190455. Publisher: Royal Society.
[21] Guichard, F.; Zhang, Y.; Lutscher, F., The emergence of phase asynchrony and frequency modulation in metacommunities, Theoretical Ecology, 12, 3, 329-343 (2019)
[22] Haegeman, B.; Loreau, M., A mathematical synthesis of niche and neutral theories in community ecology, J. Theor. Biol., 269, 1, 150-165 (2011) · Zbl 1307.92323
[23] Harman, R. R.; Goddard, J.; Shivaji, R.; Cronin, J. T., Frequency of occurrence and population-dynamic consequences of different forms of density-dependent emigration, Am. Nat., 195, 5, 851-867 (2020)
[24] Hauzy, C.; Gauduchon, M.; Hulot, F. D.; Loreau, M., Density-dependent dispersal and relative dispersal affect the stability of predator-prey metacommunities, J. Theor. Biol., 266, 3, 458-469 (2010) · Zbl 1407.92142
[25] Hauzy, C.; Hulot, F. D.; Gins, A.; Loreau, M., Intra-and interspecific density-dependent dispersal in an aquatic prey-predator system, J. Anim. Ecol., 76, 3, 552-558 (2007)
[26] Hayes, S. M.; Anderson, K. E., Beyond connectivity: how the structure of dispersal influences metacommunity dynamics, Theoretical Ecology, 11, 2, 151-159 (2018)
[27] Heckmann, L.; Drossel, B.; Brose, U.; Guill, C., Interactive effects of body-size structure and adaptive foraging on food-web stability: Body size, adaptivity and food-web stability, Ecol. Lett., 15, 3, 243-250 (2012)
[28] Hulot, F. D.; Lacroix, G.; Loreau, M., Differential responses of size-based functional groups to bottom-up and top-down perturbations in pelagic food webs: a meta-analysis, Oikos, 123, 11, 1291-1300 (2014)
[29] Jacob, S.; Bestion, E.; Legrand, D.; Clobert, J.; Cote, J., Habitat matching and spatial heterogeneity of phenotypes: implications for metapopulation and metacommunity functioning, Evol. Ecol., 29, 6, 851-871 (2015)
[30] Jansen, V. A.A., Regulation of predator-prey systems through spatial interactions: a possible solution to the paradox of enrichment, Oikos, 74, 3, 384 (1995)
[31] Jansen, V. A.A., Phase locking: another cause of synchronicity in predator-prey systems, Trends Ecol. Evol., 14, 7, 278-279 (1999)
[32] Jarillo, J.; Sæther, B.-E.; Engen, S.; Cao-García, F. J., Spatial scales of population synchrony in predator-prey systems, Am. Nat., 195, 2, 216-230 (2020)
[33] Koelle, K.; Vandermeer, J., Dispersal-induced desynchronization: from metapopulations to metacommunities, Ecol. Lett., 8, 2, 167-175 (2005)
[34] Kondoh, M., Foraging adaptation and the relationship between food-web complexity and stability, Science, 299, 5611, 1388-1391 (2003)
[35] Lande, R.; Engen, S.; Saether, B.-E., Stochastic population dynamics in ecology and conservation (2003), Oxford University Press
[36] Laundré, J. W.; Hernández, L.; Altendorf, K. B., Wolves, elk, and bison: reestablishing the landscape of fear in Yellowstone National Park, U.S.A, Can. J. Zool., 79, 8, 1401-1409 (2001)
[37] Laundré, J. W.; Hernández, L.; Ripple, W. J., The landscape of fear: ecological implications of being afraid, The Open Ecology Journal, 3, 3, 1-7 (2010)
[38] Leibold, M.A. and Chase, J.M. (2017). Metacommunity Ecology, volume 59 of Monographs in population biology. Princeton University Press.
[39] Leibold, M. A.; Holyoak, M.; Mouquet, N.; Amarasekare, P.; Chase, J. M.; Hoopes, M. F.; Holt, R. D.; Shurin, J. B.; Law, R.; Tilman, D.; Loreau, M.; Gonzalez, A., The metacommunity concept: a framework for multi-scale community ecology, Ecol. Lett., 7, 7, 601-613 (2004)
[40] Li, Z.-Z.; Gao, M.; Hui, C.; Han, X.-Z.; Shi, H., Impact of predator pursuit and prey evasion on synchrony and spatial patterns in metapopulation, Ecol. Model., 185, 2-4, 245-254 (2005)
[41] Liu, Z.; Zhang, F.; Hui, C., Density-dependent dispersal complicates spatial synchrony in tri-trophic food chains, Popul. Ecol., 58, 1, 223-230 (2016)
[42] Lloyd, A. L.; May, R. M., Synchronicity, chaos and population cycles: spatial coherence in an uncertain world, Trends Ecol. Evol., 14, 11, 417-418 (1999)
[43] Loeuille, N., Consequences of adaptive foraging in diverse communities, Funct. Ecol., 24, 1, 18-27 (2010)
[44] Loreau, M.; de Mazancourt, C., Species synchrony and Its drivers: neutral and nonneutral community dynamics in fluctuating environments, Am. Nat., 172, 2, E48-E66 (2008)
[45] Loreau, M.; Mouquet, N.; Gonzalez, A., Biodiversity as spatial insurance in heterogeneous landscapes, Proc. Nat. Acad. Sci., 100, 22, 12765-12770 (2003)
[46] Marleau, J.; Guichard, F.; Loreau, M., Meta-ecosystem dynamics and functioning on finite spatial networks, Proc. R.. Soc. B: Biolog. Sci., 281, 1777 (2014), 20132094
[47] McCann, K. S.; Hastings, A.; Huxel, G. R., Weak trophic interactions and the balance of nature, Nature, 395, 6704, 794-798 (1998)
[48] McCann, K. S.; Rasmussen, J. B.; Umbanhowar, J., The dynamics of spatially coupled food webs, Ecol. Lett., 8, 5, 513-523 (2005)
[49] Mchich, R.; Auger, P.; Poggiale, J.-C., Effect of predator density dependent dispersal of prey on stability of a predator-prey system, Math. Biosci., 206, 2, 343-356 (2007) · Zbl 1114.92069
[50] Moran, P., The statistical analysis of the Canadian Lynx cycle, Australian J. Zoology, 1, 3, 291 (1953)
[51] Pedersen, E. J.; Marleau, J. N.; Granados, M.; Moeller, H. V.; Guichard, F., Nonhierarchical dispersal promotes stability and resilience in a tritrophic metacommunity, Am. Nat., 187, 5, E116-E128 (2016)
[52] Post, D. M.; Conners, M. E.; Goldberg, D. S., Prey preference by a top-predator and the stability of linked food chains, Ecology, 81, 1, 8-14 (2000)
[53] Preisser, E. L.; Bolnick, D. I., The many faces of fear: comparing the pathways and impacts of nonconsumptive predator effects on prey populations, PLoS ONE, 3, 6, Article e2465 pp. (2008)
[54] Preisser, E. L.; Bolnick, D. I.; Benard, M. F., Scared to death? The effects of intimidation and consumption in predator-prey interactions, Ecology, 86, 2, 501-509 (2005)
[55] Quévreux, P.; Barbier, M.; Loreau, M., Synchrony and perturbation transmission in trophic metacommunities, Am. Nat. (2021), page 714131
[56] Rooney, N.; McCann, K. S.; Gellner, G.; Moore, J. C., Structural asymmetry and the stability of diverse food webs, Nature, 442, 7100, 265-269 (2006)
[57] Shanafelt, D. W.; Loreau, M., Stability trophic cascades in food chains, Royal Society Open Science, 5, 11, Article 180995 pp. (2018)
[58] Uchida, S.; Drossel, B., Relation between complexity and stability in food webs with adaptive behavior, J. Theor. Biol., 247, 4, 713-722 (2007) · Zbl 1455.92157
[59] Vasseur, D. A.; Fox, J. W., Environmental fluctuations can stabilize food web dynamics by increasing synchrony, Ecol. Lett., 10, 11, 1066-1074 (2007)
[60] Vasseur, D. A.; Fox, J. W., Phase-locking and environmental fluctuations generate synchrony in a predator-prey community, Nature, 460, 7258, 1007-1010 (2009)
[61] Wang, S.; Haegeman, B.; Loreau, M., Dispersal and metapopulation stability. PeerJ, 3, Article e1295 pp. (2015)
[62] Wollrab, S.; Diehl, S.; De Roos, A. M., Simple rules describe bottom-up and top-down control in food webs with alternative energy pathways, Ecol. Lett., 15, 9, 935-946 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.