×

A new model of dengue fever in terms of fractional derivative. (English) Zbl 1470.92299

Summary: It is eminent that the epidemiological patterns of dengue are threatening for both the global economy and human health. The experts in the field are always in search to have better mathematician models in order to understand the transmission dynamics of epidemics models and to suggest possible control or the minimization of the infection from the community. In this research, we construct a new fractional-order system for dengue infection with carrier and partially immune classes to visualize the intricate dynamics of dengue. By using the basics of fractional theory, we determine the fundamental results of the proposed fractional-order dengue model. We obtain the basic reproduction number \(R_0\) by next generation method and present the results based on it. The stability results are established for the infection-free state of the system. Moreover, sensitivity of \(R_0\) is analyzed through partial rank correlation coefficient (PRCC) method to show the importance of different parameters in \(R_0\). The influence of different input factors is shown on the output of basic reproduction number \(R_0\) numerically. Our result showed that the threshold parameter \(R_0\) can be decreased by increasing vaccination and treatment in the system. Finally, we illustrate the solution of the suggested dengue system through a numerical scheme to notice the influence of the fractional-order \(\vartheta\) on the system. We observed that the fractional-order dynamics can explain the complex system of dengue infection more precisely and accurately rather than the integer-order dynamics. In addition, we noticed that the index of memory and biting rate of vector can play a significant part in the prevention of the infection.

MSC:

92D30 Epidemiology
92C60 Medical epidemiology
26A33 Fractional derivatives and integrals
34C60 Qualitative investigation and simulation of ordinary differential equation models

References:

[1] Center for Disease Control and Prevention. Dengue, Accessed January 14, 2013. URL http://www.cdc.gov/dengue/.
[2] D. J. Gubler, Dengue and dengue hemorrhagic fever, Clin. Microbiol. Rev., 11(1998), 480-496.
[3] M. G. Guzman, G. Kouri, J. Bravo, L. Valdes, S. Vasquez, S. B. Halstead, Effect of age on outcome of secondary dengue 2 infections, Int. J. Infect. Dis., 6(2002), 118-124.
[4] East, Susie (6 April 2016). World’s first dengue fever vaccine launched in the Philippines. CNN. Archived from the original on 18 October 2016. Retrieved 17 October 2016.
[5] Epidemiology, https://www.cdc.gov/dengue/epidemiology/index.html. Retrieved 7 March 2018. · Zbl 1409.37087
[6] Y. Xiao, T. Zhao, S. Tang, Dynamics of an infectious disease with media/ psychology induced non-smooth incidence, Math. Biosci. Eng., 10(2013), 445-461. · Zbl 1259.92061
[7] A. Wang, Y. Xiao, A Filippov system describing media effects on the spread of infectious diseases, Nonlinear Analysis, Hybrid Syst., 11(2014), 84-97. · Zbl 1323.92215
[8] L. Esteva, C. Vargas, Analysis of a dengue disease transmission model, Math. Biosci., 150(1998), 131-151. · Zbl 0930.92020
[9] L. Esteva, C. Vargas, A model for dengue disease with variable human population, J. Math. Biol., 38(1999), 220-240. · Zbl 0981.92016
[10] M. Derouich, A. Boutayeb, E. H. Twizell, A model of Dengue fever, BioMed. Eng. Online, 2(2003).
[11] J. J. Tewa, J. L. Dimi, S. Bowang, Lypaunov functions for a dengue disease transmission model, Chaos Solit. Fract., 39(2009), 936-941. · Zbl 1197.34099
[12] H. S. Rodrigues, M. T. T. Monteiro, D. F. M. Torres, Vaccination models and optimal control strategies to Dengue, Math. Biosci., 5(2014), 1-12. · Zbl 1282.92022
[13] R. Jan, Y. Xiao, Effect of partial immunity on transmission dynamics of dengue disease with optimal control, Math. Method Appl. Sci., 42(2019), 1967-1983. · Zbl 1418.34100
[14] D. S. Burke, A. Nisalak, D. E. Johnson, R. M. Scott, A prospective study of dengue infections in Bangkok, Am. J. Trop. Med. Hyg., 38(1988), 172-180.
[15] T. P. Endy, S. Chunsuttiwat, A. Nisalak, D. H. Libraty, S. Green, A. L. Rothman, et al., Epidemiology of inapparent and symptomatic acute dengue virus
[16] L. F. Chaves, L. C. Harrington, C. L. Keogh, A. M. Nguyen, U. D. Kitron, Blood feeding patterns of
[17] C. Vinauger, L. Buratti, C. R. Lazzari, Learning the way to
[18] Y. Carrera, G. A. Rosa, E. J. Vernon-Carter, A. Ramirez, A fractional-order Maxwell model for non-Newtonian fluids, Phys. A, 482(2017), 276-285. · Zbl 1495.76006
[19] R. Jan, M. A. Khan, P. Kumam, P. Thounthong, Modeling the transmission of dengue infection through fractioal derivatives, Chaos Solit. Fract., 127(2019), 189-216. · Zbl 1448.92300
[20] T. Kosztolowicz, K. D. Lewandowska, Application of fractional differential equations in modelling the subdiffusion-reaction process, Math. Model Nat. Pheno., 8(2013), 44-54. · Zbl 1302.35406
[21] C. N. Angstmann, B. I. Henry, A. V. McGann, A fractional-order infectivity SIR model, Phys. A, 452(2016), 86-93. · Zbl 1400.92458
[22] M. Alquran, I. Jaradat, Delay-asymptotic solutions for the time fractional delay-type wave equation, Phys. A, 527(2019), 121-275. · Zbl 07568302
[23] M. A. Khan, S. Ullah, M. Farooq, A new fractional model for tuberculosis with relapse via Atangana-Baleanu derivative, Chaos Solit. Fract., 116(2018), 227-238. · Zbl 1442.92150
[24] S. Qureshi, A. Atangana, Mathematical analysis of dengue fever outbreak by novel fractional operators with field data, Phys. A, 526(2019), 121-127. · Zbl 07566479
[25] A. Atangana, Application of fractional calculus to epidemiology, Fractional Dynamic, (eds. C. Cattani, H. M. Srivastava, X. Yang), De Gruyter Open, (2015), 174-190.
[26] A. Atangana, Modelling the spread of COVID-19 with new fractal-fractional
[27] E. F. Doungmo Goufo, Y. Khan, Q. A. Chaudhry, HIV and shifting epicenters for COVID-19, an alert for some countries,Chaos Solit. Fract., 139(2020), 110030.
[28] M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alex. Eng. J., (2020).
[29] W. Gao, P. Veeresha, D. G. Prakasha, H. M. Baskonus, Novel dynamic structures of 2019-nCoV with nonlocal operator via powerful computational technique, Biology, 9(2020), 107.
[30] E. Ilhan, I. O. Kiymaz, A generalization of truncated M-fractional derivative and applications to fractional differential equations, Appl. Math. Non. Sci., 5(2020), 171-188. · Zbl 07664125
[31] W. Gao, P. Veeresha, D. G. Prakasha, H. M. Baskonus, G. Yel, New numerical results for the time-fractional Phi-four equation using a novel analytical approach, Symmetry, 12(2020), 478. · Zbl 1454.35352
[32] T. A. Sulaiman, H. Bulut, S. S. Atas, Optical solitons to the fractional Schrodinger-Hirota equation, Appl. Math. Non. Sci., 4(2019),535-542. · Zbl 1538.35120
[33] J. Singh, D. Kumar, Z. Hammouch, A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput., 316(2018), 504-515. · Zbl 1426.68015
[34] C. Cattani, A review on Harmonic wavelets and their fractional extension, J. Adv. Eng. Comput., 2(2018), 224-238.
[35] X. J. Yang, F. Gao, A new technology for solving diffusion and heat equations, Therm. Sci., 21(2017), 133-140.
[36] M. A. Khan, N. Iqbal, Y. Khan, E. Alzahrani, A biologoical mathematical model of vector-host disease with saturated treatment function and optimal control strategies, Math. Biosci. Eng., 17 (2020), 3972. · Zbl 1467.92122
[37] S. K. Panda, T. Abdeljawad, C. Ravichandran, A complex valued approach to the solutions of Riemann-Liouville integral, Atangana-Baleanu integral operator and non-linear Telegraph equation via fixed point method, Chaos Solit. Fract., 130(2020), 109439. · Zbl 1489.34112
[38] X. J. Yang, D. Baleanu, M. P. Lazaveric, M. S. Cajic, Fractal boundary value problems for integral and differential equations with local fractional operators, Therm. Sci., 19(2015), 959-966.
[39] R. Almeida, Analysis of a fractional SEIR model with treatment, Appl. Math. Lett., 84(2018), 56-62. · Zbl 1474.34010
[40] R. M. A. Carvalho, C. M. A. Pinto, Immune response in HIV epidemics for distinct transmission rates and for saturated CTL response, Math. Model. Nat. Phenom., 14(2019), 13. · Zbl 1421.35375
[41] K. Diethelm, The analysis of fractional differential
[42] S. Mao, R. Xu, Y. Li, A fractional order SIRS model with standard incidence rate, J. Beihua Univ., 12(2012), 379-382. · Zbl 1262.92037
[43] Z. M. Odibat, N. T. Shawagteh, Genralized Taylor’s formula, Appl. Math. Comput., 186(2007), 286-293. · Zbl 1122.26006
[44] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, Elsevier, The Netherlands, 2006. · Zbl 1092.45003
[45] C. Castillo-Chavez, Z. Feng, W. Huang, On the computation of \(R_0\) and its role on global stability, Mathematical Approach for Emerging and Reemerging Infectious
[46] D. Matignon, Stability results for fractional differential equations with applications to control processing, Comput. Eng. Syst. Appl., 2(1996), 963-968.
[47] C. Li, Y. Ma. Fractional dynamical system and its linearization theorem, Nonlin. Dyn., 71(2013), 621-633. · Zbl 1268.34019
[48] Z. Wang, D. Yang, T. Ma, N. Sun, Stability analysis for nonlinear fractional-order system based on comparison principle, Nonlin. Dyn., 75(2014), 387-402. · Zbl 1281.34012
[49] H. I. Freedman, M. X. Tang, S. G. Ruan, Uniform persistence and flows near a closed positively invariant set, J. Dyn. Differ. Equ., 6(1994), 583-600. · Zbl 0811.34033
[50] S. Marino, I. B. Hogue, C. J. Ray, D Kirschner, A methodolojgy for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254(2008), 178-196. · Zbl 1400.92013
[51] A. Jajarmi, D. Baleanu, A new fractional analysis on the interaction of HIV with CD4+ T-cells, Chaos Solit. Fract., 113(2018), 221-229. · Zbl 1404.92117
[52] C. Li, F. Zeng, Numerical methods for fractional calculus, Chapman and Hall/CRC, (2015). · Zbl 1326.65033
[53] KKM. 2007, Health Facts 2007.
[54] KKRI, Dengue fever is still high in south sulawesi. Tribun Timur Makassar, Newspaper fact, 2009.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.