×

Breast cancer nuclei segmentation and classification based on a deep learning approach. (English) Zbl 1470.92172

The paper is concerned with image segmentation of breast cancer data (images) and involves a two-class classification problem. The overall design process realizing segmentation and leading to classification: image preprocessing, semantic segmentation, cell nuclei detection and instance segmentation, feature extraction and selection, and classification. Each phase uses in a systematic way a slew of well-known techniques encountered in image processing, namely U-neural network (for segmentation purposes), LASSO (feature selection) and a collection of commonly used classifiers (LDA (linear discriminant analysis), QDA (quadratic discriminant analysis), SVM (support vector machine), RF (random forests), NB (naive Bayes), KNN (k-nearest neighbors), and RPART (recursive partitioning and regression trees). The performance evaluation of classifiers involves a leave-one-out and k-fold cross-validation. The detailed experimental results obtained for real-world data are reported; it is demonstrated with the SVM classifier producing the best resulting among all classifiers under investigation.

MSC:

92C55 Biomedical imaging and signal processing
62P05 Applications of statistics to actuarial sciences and financial mathematics
62H30 Classification and discrimination; cluster analysis (statistical aspects)

Software:

Fiji; ISLR; R; U-Net; ElemStatLearn
Full Text: DOI

References:

[1] Alsubaie, N., Trahearn, N., Raza, S., Snead, D. and Rajpoot, N. (2017). Stain deconvolution using statistical analysis of multi-resolution stain colour representation, PLOS ONE12(1): e0169875.
[2] Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018). Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: A Cancer Journal for Clinicians68(6): 394-424.
[3] Cui, Y., Zhang, G., Liu, Z., Xiong, Z. and Hu, J. (2018). A deep learning algorithm for one-step contour aware nuclei segmentation of histopathological images, arXiv: 1803.02786.
[4] Dudzińska, D. and Piórkowski, A. (2020). Tissue differentiation based on classification of morphometric features of nuclei, in H. Florez and S. Misra (Eds), Applied Informatics, Springer, Cham, pp. 420-432.
[5] Fondón, I., Sarmiento, A., García, A.I., Silvestre, M., Eloy, C., Polónia, A. and Aguiar, P. (2018). Automatic classification of tissue malignancy for breast carcinoma diagnosis, Computers in Biology and Medicine96: 41-51.
[6] Guan, H., Zhang, Y., Cheng, H.-D. and Tang, X. (2020). Bounded-abstaining classification for breast tumors in imbalanced ultrasound images, International Journal of Applied Mathematics and Computer Science30(2): 325-336, DOI: 10.34768/amcs-2020-0025. · Zbl 1467.92107
[7] Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical Learning. Data Mining, Inference, and Prediction, Second Edition, Springer Series in Statistics, Springer, New York. · Zbl 1273.62005
[8] Hayakawa, T., Prasath, S., Kawanaka, H., Aronow, B. and Tsuruoka, S. (2019). Computational nuclei segmentation methods in digital pathology: A survey, Archives of Computational Methods in Engineering28: 1-13.
[9] Höfener, H., Homeyer, A., Weiss, N., Molin, J., Lundström, C.F. and Hahn, H.K. (2018). Deep learning nuclei detection: A simple approach can deliver state-of-the-art results, Computerized Medical Imaging and Graphics70: 43-52.
[10] Husham, A., Hazim Alkawaz, M., Saba, T., Rehman, A. and Saleh Alghamdi, J. (2016). Automated nuclei segmentation of malignant using level sets, Microscopy Research and Technique79(10): 993-997.
[11] Irshad, H., Veillard, A., Roux, L. and Racoceanu, D. (2014). Methods for nuclei detection, segmentation, and classification in digital histopathology: A review—Current status and future potential, IEEE Reviews in Biomedical Engineering7: 97-114.
[12] James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R, Springer Series in Statistics, Springer, New York. · Zbl 1281.62147
[13] Jassem, J. and Krzakowski, M. (2018). Breast cancer, Oncology in Clinical Practice14(4): 171-215.
[14] Kantavat, P., Kijsirikul, B., Songsiri, P., Fukui, K.-I. and Numao, M. (2018). Efficient decision trees for multi-class support vector machines using entropy and generalization error estimation, International Journal of Applied Mathematics and Computer Science28(4): 705-717, DOI: 10.2478/amcs-2018-0054. · Zbl 1452.68151
[15] Kowal, M. and Filipczuk, P. (2014). Nuclei segmentation for computer-aided diagnosis of breast cancer, International Journal of Applied Mathematics and Computer Science24(1): 19-31, DOI: 10.2478/amcs-2014-0002. · Zbl 1292.92006
[16] Kowal, M., Skobel, M. and Nowicki, N. (2018). The feature selection problem in computer-assisted cytology, International Journal of Applied Mathematics and Computer Science28(4): 759-770, DOI: 10.2478/amcs-2018-0058.
[17] Koyuncu, C.F., Akhan, E., Ersahin, T., Cetin-Atalay, R. and Gunduz-Demir, C. (2016). Iterative h-minima-based marker-controlled watershed for cell nucleus segmentation, Cytometry Part A89(4): 338-349.
[18] Landini, G., Rueden, C., Schindelin, J., Hiner, M. and Pavie, B. (2004). Image colour deconvolution, https://imagej.net/Colour_Deconvolution.
[19] Litherland, J.C. (2002). Should fine needle aspiration cytology in breast assessment be abandoned?, Clinical Radiology57(2): 81-84.
[20] Macenko, M., Niethammer, M., Marron, J.S., Borland, D., Woosley, J.T., Guan, X., Schmitt, C. and Thomas, N.E. (2009). A method for normalizing histology slides for quantitative analysis, IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI), Boston, USA, pp. 1107-1110.
[21] Mittal, H. and Saraswat, M. (2019). An automatic nuclei segmentation method using intelligent gravitational search algorithm based superpixel clustering, Swarm and Evolutionary Computation45: 15-32.
[22] Naylor, P., Laé, M., Reyal, F. and Walter, T. (2017). Nuclei segmentation in histopathology images using deep neural networks, IEEE 14th International Symposium on Biomedical Imaging, Melbourne, Australia, pp. 933-936.
[23] Paramanandam, M., O‘Byrne, M., Ghosh, B., Mammen, J.J., Manipadam, M.T., Thamburaj, R. and Pakrashi, V. (2016). Automated segmentation of nuclei in breast cancer histopathology images, PLOS ONE11(9): 1-15.
[24] Piorkowski, A. and Gertych, A. (2019). Color normalization approach to adjust nuclei segmentation in images of hematoxylin and eosin stained tissue, in E. Piętka et al. (Eds), Information Technology in Biomedicine, Springer, Cham, pp. 393-406.
[25] R Core Team (2019). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, https://www.R-project.org.
[26] Rabinovich, A., Agarwal, S., Laris, C., Price, J. and Belongie, S. (2004). Unsupervised color decomposition of histologically stained tissue samples, in S. Thrun et al. (Eds), Advances in Neural Information Processing Systems 16, MIT Press, Cambridge, pp. 667-674.
[27] Ronneberger, O., P.Fischer and Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation, in N. Navab et al. (Eds), Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, Cham, pp. 234-241.
[28] Ruifrok, A.C. and Johnston, D.A. (2001). Quantification of histochemical staining by color deconvolution, Analytical & Quantitative Cytology & Histology23(4): 291-299.
[29] Sadanandan, S.K., Ranefall, P., Le Guyader, S. and Wahlby, C. (2017). Automated training of deep convolutional neural networks for cell segmentation, Scientific Reports7(7860): 1-7.
[30] Santanu, R., Alok, J., Shyam, L. and Jyoti, K. (2018). A study about color normalization methods for histopathology images, Micron114: 42-61.
[31] Schindelin, J., Arganda-Carreras, I. Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P. and Albert A. (2012). FIJI: An open-source platform for biological-image analysis, Nature Methods9: 676-682.
[32] Skobel, M., Kowal, M., Korbicz, J. and Obuchowicz, A. (2019). Cell nuclei segmentation using marker-controlled watershed and Bayesian object recognition, in E. Piętka et al. (Eds), International Conference on Information Technologies in Biomedicine, Springer International Publishing, Cham, pp. 407-418.
[33] Spanhol, F.A., Oliveira, L.S., Petitjean, C. and Heutte, L. (2016). Breast cancer histopathological image classification using convolutional neural networks, International Joint Conference on Neural Networks, Vancouver, Canada, pp. 2560-2567.
[34] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society: Series B (Methodological)58(1): 267-288. · Zbl 0850.62538
[35] Veta, M., van Diest, P.J., Kornegoor, R., Huisman, A., Viergever, M.A. and Pluim, J.P.W. (2013). Automatic nuclei segmentation in H&E stained breast cancer histopathology images, PLOS ONE8(7):e70221.
[36] Vincent, L. and Soille, P. (1991). Watersheds in digital spaces: An efficient algorithm based on immersion simulations, IEEE Transactions on Pattern Analysis and Machine Intelligence13(6): 583-598.
[37] Wang, D., Khosla, A., Gargeya, R., Irshad, H. and Beck, A.H. (2016). Deep learning for identifying metastatic breast cancer, arXiv: 1606.05718.
[38] Xing, F. and Yang, L. (2016). Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: A comprehensive review, IEEE Reviews in Biomedical Engineering9: 234-263.
[39] Yang, X., Li, H. and Zhou, X. (2006). Nuclei segmentation using marker-controlled watershed, tracking using mean-shift, and Kalman filter in time-lapse microscopy, IEEE Transactions on Circuits and Systems I: Regular Papers53(11): 2405-2414.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.