×

Boltzmann equation and hydrodynamic equations: their equilibrium and non-equilibrium behaviour. (English) Zbl 1470.82019

Summary: This short article summarizes the key features of equilibrium and non-equilibrium aspects of Boltzmann and hydrodynamic equations. Under equilibrium, the Boltzmann equation generates uncorrelated random velocity that corresponds to \(k^2\) energy spectrum for the Euler equation. The latter spectrum is produced using initial configuration with many Fourier modes of equal amplitudes but with random phases. However, for a large-scale vortex as an initial condition, earlier simulations exhibit a combination of \(k^{-5/3}\) (in the inertial range) and \(k^2\) (for large wavenumbers) spectra, with the range of \(k^2\) spectrum increasing with time. These simulations demonstrate an approach to equilibrium or thermalization of Euler turbulence. In addition, they also show how initial velocity field plays an important role in determining the behaviour of the Euler equation. In non-equilibrium scenario, both Boltzmann and Navier-Stokes equations produce similar flow behaviour, for example, Kolmogorov’s \(k^{-5/3}\) spectrum in the inertial range.

MSC:

82C21 Dynamic continuum models (systems of particles, etc.) in time-dependent statistical mechanics
76F30 Renormalization and other field-theoretical methods for turbulence

References:

[1] Hinrichsen H, Gogolin C, Janotta P. 2011 Non-equilibrium dynamics, thermalization and entropy production. J. Phys.: Conf. Ser. 297, 012011. (doi:10.1088/1742-6596/297/1/012011) · doi:10.1088/1742-6596/297/1/012011
[2] Langen T, Geiger R, Schmiedmayer J. 2015 Ultracold atoms out of equilibrium. Annu. Rev. Condens. Matter Phys. 6, 201-217. (doi:10.1146/annurev-conmatphys-031214-014548) · doi:10.1146/annurev-conmatphys-031214-014548
[3] Deutsch JM. 2018 Eigenstate thermalization hypothesis. Rep. Prog. Phys. 81, 082001-17. (doi:10.1088/1361-6633/aac9f1) · doi:10.1088/1361-6633/aac9f1
[4] Wilming H, Goihl M, Roth I, Eisert J. 2019 Entanglement-ergodic quantum systems equilibrate exponentially well. Phys. Rev. Lett. 123, 200604. (doi:10.1103/PhysRevLett.123.200604) · doi:10.1103/PhysRevLett.123.200604
[5] Boltzmann L. 2003 Further studies on the thermal equilibrium of gas molecules. In The kinetic theory of gases: an anthology of classic papers with historical commentary, pp. 262-349. Singapore: World Scientific.
[6] Liboff RL. 1998 Kinetic theory. New York, NY: Wiley.
[7] Choudhuri AR. 1998 The physics of fluids and plasmas: an introduction for astrophysicists. Cambridge, UK: Cambridge University Press.
[8] Huang K. 2008 Statistical mechanics. 2nd edn: New York, NY: John Wiley & Sons.
[9] Lifshitz EM, Pitaevskii LP. 2012 Physical kinetics. Course of Theoretical Physics. Oxford, UK: Pergamon Press.
[10] Siscoe GL. 1983 Solar system magnetohydrodynamics. In Solar terrestrial physics principles and theoretical foundations (ed. RL Carovillano, JM Forbes). Dordrecht, The Netherlands: D. Reidel Publishing Company.
[11] Landau LD, Lifshitz EM. 1980 Statistical physics, 3rd edn. Course of Theoretical Physics. Oxford, UK: Elsevier.
[12] Benzi R, Succi S, Vergassola M. 1992 The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 145-197. (doi:10.1016/0370-1573(92)90090-M) · doi:10.1016/0370-1573(92)90090-M
[13] Chen S, Doolen GD. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329-364. (doi:10.1146/annurev.fluid.30.1.329) · Zbl 1398.76180 · doi:10.1146/annurev.fluid.30.1.329
[14] Succi S. 2001 The lattice Boltzmann equation for fluid dynamics and beyond. Oxford, UK: Clarendon Press. · Zbl 0990.76001
[15] Aidun CK, Clausen JR. 2010 Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42, 439-472. (doi:10.1146/annurev-fluid-121108-145519) · Zbl 1345.76087 · doi:10.1146/annurev-fluid-121108-145519
[16] Bird GA. 1994 Molecular gas dynamics and the direct simulation of gas flows. Oxford, UK: Claredon.
[17] Gallis MA, Bitter NP, Koehler TP, Torczynski JR, Plimpton SJ, Papadakis G. 2017 Molecular-level simulations of turbulence and its decay. Phys. Rev. Lett. 118, 064501. (doi:10.1103/PhysRevLett.118.064501) · doi:10.1103/PhysRevLett.118.064501
[18] Martinez DO, Matthaeus WH, Chen S, Montgomery DC. 1994 Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics. Phys. Fluids 6, 1285-1298. (doi:10.1063/1.868296) · Zbl 0826.76069 · doi:10.1063/1.868296
[19] Lee TD. 1952 On some statistical properties of hydrodynamical and magneto-hydrodynamical fields. Quart. Appl. Math. 10, 69-74. (doi:10.1090/qam/51081) · Zbl 0047.19601 · doi:10.1090/qam/51081
[20] Kraichnan RH. 1973 Helical turbulence and absolute equilibrium. J. Fluid Mech. 59, 745-752. (doi:10.1017/S0022112073001837) · Zbl 0272.76030 · doi:10.1017/S0022112073001837
[21] Cichowlas C, Bonaïti P, Debbasch F, Brachet ME. 2005 Effective dissipation and turbulence in spectrally truncated Euler flows. Phys. Rev. Lett. 95, 264502. (doi:10.1103/PhysRevLett.95.264502) · doi:10.1103/PhysRevLett.95.264502
[22] Krstulovic G, Mininni PD, Brachet ME, Pouquet AG. 2009 Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows. Phys. Rev. E 79, 056304. (doi:10.1103/PhysRevE.79.056304) · doi:10.1103/PhysRevE.79.056304
[23] Frisch U. 1995 Turbulence: the legacy of A. N. Kolmogorov. Cambridge, UK: Cambridge University Press. · Zbl 0832.76001
[24] Frisch U, Kurien S, Pandit R, Pauls W, Ray SS, Wirth A, Zhu JZ. 2008 Hyperviscosity, galerkin truncation, and bottlenecks in turbulence. Phys. Rev. Lett. 101, 144501. (doi:10.1103/PhysRevLett.101.144501) · doi:10.1103/PhysRevLett.101.144501
[25] Krstulovic G, Brachet ME. 2011 Dispersive bottleneck delaying thermalization of turbulent Bose-Einstein condensates. Phys. Rev. Lett. 106, 115303. (doi:10.1103/PhysRevLett.106.115303) · doi:10.1103/PhysRevLett.106.115303
[26] Landau LD, Lifshitz EM. 1976 Mechanics, 3rd edn. Course of Theoretical Physics. Oxford, UK: Elsevier.
[27] Lesieur M. 2008 Turbulence in fluids. Dordrecht: Springer-Verlag. · Zbl 1138.76004
[28] Dar G, Verma MK, Eswaran V. 2001 Energy transfer in two-dimensional magnetohydrodynamic turbulence: formalism and numerical results. Physica D 157, 207-225. (doi:10.1016/S0167-2789(01)00307-4) · Zbl 1031.76022 · doi:10.1016/S0167-2789(01)00307-4
[29] Verma MK. 2004 Statistical theory of magnetohydrodynamic turbulence: recent results. Phys. Rep. 401, 229-380. (doi:10.1016/j.physrep.2004.07.007) · doi:10.1016/j.physrep.2004.07.007
[30] Verma MK. 2019 Energy transfers in fluid flows: multiscale and spectral perspectives. Cambridge, UK: Cambridge University Press. · Zbl 1411.76002
[31] Verma MK, Chatterjee AG, Yadav RK, Paul S, Chandra M, Samtaney R. 2013 Benchmarking and scaling studies of pseudospectral code Tarang for turbulence simulations. Pramana-J. Phys. 81, 617-629. (doi:10.1007/s12043-013-0594-4) · doi:10.1007/s12043-013-0594-4
[32] Chatterjee AG, Verma MK, Kumar A, Samtaney R, Hadri B, Khurram R. 2018 Scaling of a Fast Fourier Transform and a pseudo-spectral fluid solver up to 196 608 cores. J. Parallel Distrib. Comput. 113, 77-91. (doi:10.1016/j.jpdc.2017.10.014) · doi:10.1016/j.jpdc.2017.10.014
[33] Prigogine I, Stengers I. 1984 Order out of chaos: Man’s new dialogue with nature. New York, NY: Bantam Books.
[34] Prigogine I. 1962 Non-equilibrium statistical mechanics. New York, NY: Interscience. · Zbl 0106.43301
[35] Dallas V, Fauve S, Alexakis A. 2015 Statistical equilibria of large scales in dissipative hydrodynamic turbulence. Phys. Rev. Lett. 115, 204501. (doi:10.1103/PhysRevLett.115.204501) · doi:10.1103/PhysRevLett.115.204501
[36] Alexakis A, Biferale L. 2018 Cascades and transitions in turbulent flows. Phys. Rep. 767-769, 1-101. (doi:10.1016/j.physrep.2018.08.001) · doi:10.1016/j.physrep.2018.08.001
[37] Kolmogorov AN. 1941 Dissipation of energy in locally isotropic turbulence. Dokl. Acad. Nauk. SSSR 32, 16-18. · Zbl 0063.03292
[38] Taylor GI. 1954 The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. A 223, 446-468. (doi:10.1098/rspa.1954.0130) · doi:10.1098/rspa.1954.0130
[39] Falkovich G, Sreenivasan KR. 2006 Lessons from hydrodynamic turbulence. Phys. Today 59, 43-49. (doi:10.1063/1.2207037) · doi:10.1063/1.2207037
[40] Verma MK. 2019 Asymmetric energy transfers in driven nonequilibrium systems and arrow of time. Eur. Phys. J. B 92, 190. (doi:10.1140/epjb/e2019-100171-5) · Zbl 1516.82064 · doi:10.1140/epjb/e2019-100171-5
[41] Jucha J, Xu H, Pumir A. 2014 Time-reversal-symmetry breaking in turbulence. Phys. Rev. Lett. 113, 054501. (doi:10.1103/PhysRevLett.113.054501) · doi:10.1103/PhysRevLett.113.054501
[42] Bhatnagar A, Gupta A, Mitra D, Pandit R. 2018 Heavy inertial particles in turbulent flows gain energy slowly but lose it rapidly. Phys. Rev. E 97, 033102. (doi:10.1103/PhysRevE.97.033102) · doi:10.1103/PhysRevE.97.033102
[43] Maity P, Govindarajan R, Ray SS. 2019 Statistics of Lagrangian trajectories in a rotating turbulent flow. Phys. Rev. E 100, 043110. (doi:10.1103/PhysRevE.100.043110) · doi:10.1103/PhysRevE.100.043110
[44] Pao YH. 1965 Structure of turbulent velocity and scalar fields at large wavenumbers. Phys. Fluids 8, 1063-1075. (doi:10.1063/1.1761356) · doi:10.1063/1.1761356
[45] Verma MK, Kumar A, Kumar P, Barman S, Chatterjee AG, Samtaney R, Stepanov R. 2018 Energy spectra and fluxes in dissipation range of turbulent and laminar flows. Fluid Dyn. 53, 728-739. (doi:10.1134/S0015462818050166) · Zbl 1414.76027 · doi:10.1134/S0015462818050166
[46] Boyd JP. 2003 Chebyshev and fourier spectral methods, 2nd revised edn. New York, NY: Dover Publications.
[47] Ansumali S, Arcidiacono S, Chikatamarla SS, Prasianakis NI, Gorban AN, Karlin IV. 2007 Quasi-equilibrium lattice Boltzmann method. Eur. Phys. J. B 56, 135-139. (doi:10.1140/epjb/e2007-00100-1) · doi:10.1140/epjb/e2007-00100-1
[48] Singh SK, Thantanapally C, Ansumali S. 2016 Gaseous microflow modeling using the Fokker-Planck equation. Phys. Rev. E 94, 063307. (doi:10.1103/PhysRevE.94.063307) · doi:10.1103/PhysRevE.94.063307
[49] Yakhot V, Orszag SA. 1986 Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput. 1, 3-51. (doi:10.1007/BF01061452) · Zbl 0648.76040 · doi:10.1007/BF01061452
[50] Amit DJ. 1978 Field theory, the renormalization group, and critical phenomena. International Series in Pure and Applied Physics. Singapore: World Scientific.
[51] Wilson KG, Kogut J. 1974 The renormalization group and the ε expansion. Phys. Rep. 12, 75-199. (doi:10.1016/0370-1573(74)90023-4) · doi:10.1016/0370-1573(74)90023-4
[52] Verma MK. 2019 Description of nature: a single law or many laws? In Indian Academy of Sciences Conference Series, vol. 2:1, pp. 121-124.
[53] Verma MK. 2019 Microscopic laws vs. macroscopic laws: perspectives from kinetic theory and hydrodynamics. (http://arxiv.org/1904.12044).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.