×

A short walk in quantum probability. (English) Zbl 1470.81011

Summary: This is a personal survey of aspects of quantum probability related to the Heisenberg commutation relation for canonical pairs. Using the failure, in general, of non-negativity of the Wigner distribution for canonical pairs to motivate a more satisfactory quantum notion of joint distribution, we visit a central limit theorem for such pairs and a resulting family of quantum planar Brownian motions which deform the classical planar Brownian motion, together with a corresponding family of quantum stochastic areas.

MSC:

81P05 General and philosophical questions in quantum theory
60F05 Central limit and other weak theorems
81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices

References:

[1] 1Kolmogorov AN. 1933 Grundbegriffen der Wahrscheinlichkeits-rechnung. Berlin, Germany: Julius Springer. · Zbl 0007.21601
[2] 2von Neumann J. 1932 Matematische Grundlagen der Quantum Mechanik. Berlin, Germany: Springer. · JFM 58.0929.06
[3] 3Connes A. 1994 Noncommutative geometry. New York, NY: Academic Press. · Zbl 0818.46076
[4] 4Stone MH. 1930 Linear transformations in Hilbert space, III: operational methods and group theory. Proc. Natl Acad. Sci. USA 16, 172-175. (doi:10.1073/pnas.16.2.172) · JFM 56.0357.01 · doi:10.1073/pnas.16.2.172
[5] 5von Neumann J. 1931 Die Eindeutigkeit der Schrödingerschen Operatoren. Math. Ann. 104, 570-578. (doi:10.1007/BF01457956) · Zbl 0001.24703 · doi:10.1007/BF01457956
[6] 6Putnam C. 1954 Commutation properties of Hilbert space operators and related topics. Berlin, Germany: Springer.
[7] 7Parthasarathy KR. 1992 An introduction to quantum stochastic calculus. Basel, Switzerland: Birkhäuser. · Zbl 0751.60046
[8] 8Wigner E. 1932 On the quantum correction to thermodynamic equilibrium. Phys. Rev. 40, 749-759. (doi:10.1103/PhysRev.40.749) · Zbl 0004.38201 · doi:10.1103/PhysRev.40.749
[9] 9Hudson RL. 1974 When is the Wigner quasi-probability density non-negative? Rep. Math. Phys. 6, 249-252. (doi:10.1016/0034-4877(74)90007-X) · Zbl 0324.60018 · doi:10.1016/0034-4877(74)90007-X
[10] 10Billingsley P. 1999 Convergence of probability measures, 2nd edn. New York, NY: Wiley. · Zbl 0944.60003
[11] 11Cushen CD, Hudson RL. 1971 A quantum-mechanical central limit theorem. J. Appl. Probab. Theory 8, 454-469. (doi:10.1016/0047-259X(77)90036-7) · Zbl 0401.60087 · doi:10.1016/0047-259X(77)90036-7
[12] 12Benatti F, Carollo F, Florianini R, Narnhofer H. 2017 Quantum fluctuations in mesoscopic systems. J. Phys. A 50, 423001. (doi:10.1088/1751-8232/aa84d2) · Zbl 1390.81063 · doi:10.1088/1751-8232/aa84d2
[13] 13Vladimirov IG, Petersen IR, James MR. 2017 Multipoint Gaussian states, quadratic exponential cost functionals and large deviations estimates for linear quantum stochastic systems. (http://arxiv.org/abs/1707.09302).
[14] 14Cockcroft AM, Hudson RL. 1977 Quantum mechanical Wiener processes. J. Multivar. Anal. 7, 107-124. (doi:10.1016/0047-259X(77)90035-5) · Zbl 0401.60086 · doi:10.1016/0047-259X(77)90035-5
[15] 15Hudson RL, Parthasarathy KR. 1984 Quantum Ito’s formula and stochastic evolutions. Commun. Math. Phys. 93, 301-323. · Zbl 0546.60058
[16] 16Hudson RL. 1979 The strong Markov property for canonical Wiener processes. J. Funct. Anal. 34, 266-281. (doi:10.1016/0022-1236(79)90034-X) · Zbl 0424.46048 · doi:10.1016/0022-1236(79)90034-X
[17] 17Parthasarathy KR, Sinha KB. 1988 Stop times in Fock space stochastic calculus. Probab. Relat. Fields 75, 317-349. (doi:10.1007/BF00318706) · doi:10.1007/BF00318706
[18] 18Hudson RL, Lindsay JM. 1985 Uses of non-Fock quantum Brownian motion and a quantum martingale representation theorem. In Quantum probability and applications II (eds L Accardi, W von Waldenfels). Proceedings Heidelberg 1984. Springer Lecture Notes in Mathematics, vol. 1136, pp. 276-305. Berlin, Germany: Springer. · Zbl 0569.60055
[19] 19Hudson RL, Lindsay JM. 1985 A non-commutative martingale representation theorem for non-Fock quantum Brownian motion. J. Funct. Anal. 61, 202-221. (doi:10.1016/0022-1236(85)90034-5) · Zbl 0577.60055 · doi:10.1016/0022-1236(85)90034-5
[20] 20Lévy P. 1940 Le mouvement Brownien plan. Am. J. Math. 62, 487-550. (doi:10.2307/2371467) · JFM 66.0619.02 · doi:10.2307/2371467
[21] 21Lévy P. 1951 Wiener’s random function and other Laplacian functions. In Proc. 2nd Berkeley Symposium Math Statistics and Probability, Berkeley, CA, 31 July-12 August 1950, pp. 171-187. Berkeley, CA: University of California Press. · Zbl 0044.13802
[22] 22Chen S, Hudson RL. 2013 Some properties of quantum Lévy area in Fock and non-Fock quantum stochastic calculus. Probab. Math. Stat. 33, 425-434. · Zbl 1283.81099
[23] 23Hudson RL. 2013 Quantum Lévy area as a quantum martingale limit. In Quantum probability and related topics XXIX (eds L Accardi, F Fagnola), pp 169-188. Singapore: World Scientific. · Zbl 1327.81253
[24] 24Hudson R, Schauz U, Yue W. 2016 Moments of quantum Lévy areas using sticky shuffle Hopf algebras. (http://arxiv.org/abs/1605.00730v2) · Zbl 1408.81021
[25] 25Biane P, Pitman J, Yor M. 2001 Probability laws related to the Jacobi theta and Riemann zeta functions and Brownian excursions. Bull. Am. Math. Soc. 38, 435-465. (doi:10.1090/S0273-0979-01-00912-0) · Zbl 1040.11061 · doi:10.1090/S0273-0979-01-00912-0
[26] 26Hudson RL, Pei Y. 2015 On a causal quantum stochastic double product integral related to Lévy area. (http://arxiv.org/abs/1506.04294)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.