×

Degenerate elastic networks. (English) Zbl 1470.74014

Summary: We minimize a linear combination of the length and the \(L^2\)-norm of the curvature among networks in \(\mathbb{R}^d\) belonging to a given class determined by the number of curves, the order of the junctions, and the angles between curves at the junctions. Since this class lacks compactness, we characterize the set of limits of sequences of networks bounded in energy, providing an explicit representation of the relaxed problem. This is expressed in terms of the new notion of degenerate elastic networks that, rather surprisingly, involves only the properties of the given class, without reference to the curvature. In the case of \(d=2\) we also give an equivalent description of degenerate elastic networks by means of a combinatorial definition easy to validate by a finite algorithm. Moreover we provide examples, counterexamples, and additional results that motivate our study and show the sharpness of our characterization.

MSC:

74B99 Elastic materials
74G65 Energy minimization in equilibrium problems in solid mechanics
74K99 Thin bodies, structures

References:

[1] Abate, M., Tovena, F.: Curves and surfaces, Unitext, vol. 55, Springer, Milan, Translated from the 2006 Italian original by Daniele A. Gewurz (2012) · Zbl 1111.53001
[2] Alessandroni, R., Kuwert, E.: Local solutions to a free boundary problem for the Willmore functional, Calc. Var. Partial Differ. Equ. 55(2), Art. 24, 29 (2016) · Zbl 1344.49066
[3] Barrett, J.W., Garcke, H., Nürnberg, R.: Elastic flow with junctions: variational approximation and applications to nonlinear splines, Math. Models Methods Appl. Sci. 22(11), 1250037, 57 (2012) · Zbl 1252.76038
[4] Bellettini, G.; Mugnai, L., Characterization and representation of the lower semicontinuous envelope of the elastica functional, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21, 6, 839-880 (2004) · Zbl 1110.49014 · doi:10.1016/j.anihpc.2004.01.001
[5] Bellettini, G.; Mugnai, L., A varifolds representation of the relaxed elastica functional, J. Convex Anal., 14, 3, 543-564 (2007) · Zbl 1127.49032
[6] Bellettini, G.; Paolini, M., Variational properties of an image segmentation functional depending on contours curvature, Adv. Math. Sci. Appl., 5, 2, 681-715 (1995) · Zbl 0853.49014
[7] Bellettini, G.; Dal Maso, G.; Paolini, M., Semicontinuity and relaxation properties of a curvature depending functional in \(2\) D, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 20, 2, 247-297 (1993) · Zbl 0797.49013
[8] Dall’Acqua, A., Novaga, M., Pluda, A.: Minimal elastic networks, to appear: Indiana Univ. Math. J., preprint arXiv:1712.09589 · Zbl 1455.74033
[9] Dondl, PW; Lemenant, A.; Wojtowytsch, S., Phase field models for thin elastic structures with topological constraint, Arch. Rational Mech. Anal., 223, 2, 693-736 (2017) · Zbl 1366.35182 · doi:10.1007/s00205-016-1043-6
[10] Dall’Acqua, A.; Pluda, A., Some minimization problems for planar networks of elastic curves, Geom. Flows, 2, 1, 105-124 (2017) · Zbl 1383.49017
[11] Deckelnick, K.; Grunau, H-C; Röger, M., Minimising a relaxed Willmore functional for graphs subject to boundary conditions, Interfaces Free Bound., 19, 1, 109-140 (2017) · Zbl 1368.49046 · doi:10.4171/IFB/378
[12] Garcke, H., Menzel, J., Pluda, A.: Long time existence of solutions to an elastic flow of networks, preprint (2019) · Zbl 1460.35036
[13] Garcke, H.; Menzel, J.; Pluda, A., Willmore flow of planar networks, J. Differ. Equ., 266, 4, 2019-2051 (2019) · Zbl 1436.35233 · doi:10.1016/j.jde.2018.08.019
[14] Lawrence, C., Partial differential equations, Graduate Studies in Mathematics (1998), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0902.35002
[15] Masnou, S.; Nardi, G., A coarea-type formula for the relaxation of a generalized elastica functional, J. Convex Anal., 20, 3, 617-653 (2013) · Zbl 1278.49015
[16] Masnou, S.; Nardi, G., Gradient Young measures, varifolds, and a generalized Willmore functional, Adv. Calc. Var., 6, 4, 433-482 (2013) · Zbl 1275.49020 · doi:10.1515/acv-2011-0014
[17] Menzel, J.: PhD thesis: boundary value problems for generalized willmore flows, Universität Regensburg (in preparation)
[18] Mumford, D., Elastica and Computer Vision, 491-506 (1994), New York: Springer, New York · Zbl 0798.53003
[19] Pozzetta, M.: On the Plateau-Douglas problem for the Willmore energy of surfaces with planar boundary curves, To appear: ESAIM:COCV (2020) · Zbl 1446.49032
[20] Pozzetta, M., A varifold perspective on the p-elastic energy of planar sets, J. Convex Anal., 27, 3, 845-879 (2020) · Zbl 1446.49032
[21] Schätzle, R., The Willmore boundary problem, Calc. Var. Partial Differ. Equ., 37, 3-4, 275-302 (2010) · Zbl 1188.53006 · doi:10.1007/s00526-009-0244-3
[22] Truesdell, CA, The influence of elasticity on analysis: the classic heritage, Bull. Am. Math. Soc. (N.S.), 9, 3, 293-310 (1983) · Zbl 0555.73030 · doi:10.1090/S0273-0979-1983-15187-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.