×

Structured backward errors in linearizations. (English) Zbl 1470.65093

Summary: A standard approach to calculate the roots of a univariate polynomial is to compute the eigenvalues of an associated confederate matrix instead, such as, for instance, the companion or comrade matrix. The eigenvalues of the confederate matrix can be computed by Francis’s QR algorithm. Unfortunately, even though the QR algorithm is provably backward stable, mapping the errors back to the original polynomial coefficients can still lead to huge errors. However, the latter statement assumes the use of a non-structure-exploiting QR algorithm. In [J. L. Aurentz et al., SIAM J. Matrix Anal. Appl. 36, No. 3, 942–973 (2015; Zbl 1319.65034)], it was shown that a structure-exploiting QR algorithm for companion matrices leads to a structured backward error in the companion matrix. The proof relied on decomposing the error into two parts: a part related to the recurrence coefficients of the basis (a monomial basis in that case) and a part linked to the coefficients of the original polynomial. In this article we prove that the analysis can be extended to other classes of comrade matrices. We first provide an alternative backward stability proof in the monomial basis using structured QR algorithms; our new point of view shows more explicitly how a structured, decoupled error in the confederate matrix gets mapped to the associated polynomial coefficients. This insight reveals which properties have to be preserved by a structure-exploiting QR algorithm to end up with a backward stable algorithm. We will show that the previously formulated companion analysis fits into this framework, and we analyze in more detail Jacobi polynomials (comrade matrices) and Chebyshev polynomials (colleague matrices).

MSC:

65H04 Numerical computation of roots of polynomial equations
65F35 Numerical computation of matrix norms, conditioning, scaling

Citations:

Zbl 1319.65034

Software:

Chebfun; MPFR

References:

[1] M. ABRAMOWITZ ANDI. A. STEGUN,Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, vol. 55 of National Bureau of Standards Applied Mathematics Series, U.S. Government Printing Office, Washington, D.C., 1964. · Zbl 0171.38503
[2] J. L. AURENTZ, T. MACH, L. ROBOL, R. VANDEBRIL,ANDD. S. WATKINS,Core-chasing Algorithms for the Eigenvalue Problem, SIAM, Philadelphia, 2018. · Zbl 1434.65003
[3] ,Fast and backward stable computation of roots of polynomials, part II: backward error analysis; companion matrix and companion pencil, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 1245-1269. · Zbl 1398.65056
[4] ,Fast and backward stable computation of the eigenvalues of matrix polynomials, Math. Comp., 88 (2010), pp. 313-347. · Zbl 1434.65030
[5] J. L. AURENTZ, T. MACH, R. VANDEBRIL,ANDD. S. WATKINS,Fast and backward stable computation of roots of polynomials, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 942-973. · Zbl 1319.65034
[6] S. BARNETT,Polynomials and Linear Control Systems, Marcel Dekker, New York, 1983. · Zbl 0528.93003
[7] F. DETERÁN, F. M. DOPICO,ANDJ. PÉREZ,Backward stability of polynomial root-finding using Fiedler companion matrices, IMA J. Numer. Anal., 36 (2016), pp. 133-173. · Zbl 1344.65048
[8] T. A. DRISCOLL, N. HALE,ANDL. N. TREFETHEN,Chebfun Guide, Pafnuty Publications, Oxford, 2014.
[9] A. EDELMAN ANDH. MURAKAMI,Polynomial roots from companion matrix eigenvalues, Math. Comp., 64 (1995), pp. 763-776. · Zbl 0833.65041
[10] Y. EIDELMAN, L. GEMIGNANI,ANDI. GOHBERG,Efficient eigenvalue computation for quasiseparable Hermitian matrices under low rank perturbations, Numer. Algorithms, 47 (2008), pp. 253-273. · Zbl 1139.65026
[11] M. FIEDLER,A note on companion matrices, Linear Algebra Appl., 372 (2003), pp. 325-331. · Zbl 1031.15014
[12] L. FOUSSE, G. HANROT, V. LEFÈVRE, P. PÉLISSIER,ANDP. ZIMMERMANN,MPFR: a multiple-precision binary floating-point library with correct rounding, ACM Trans. Math. Software, 33 (2007), Art. No. 13, · Zbl 1365.65302
[13] L. GATTESCHI,On the zeros of Jacobi polynomials and Bessel functions, in International Conference on Special Functions: Theory and Computation (Turin, 1984), Rend. Sem. Mat. Univ. Politec. Torino, 1985, Special Issue, Università e Politecnico di Torino, Turin, 1985, pp. 149-177. · Zbl 0597.33014
[14] L. GEMIGNANI ANDL. ROBOL,Fast Hessenberg reduction of some rank structured matrices, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 574-598. · Zbl 1367.65063
[15] P. W. LAWRENCE ANDR. M. CORLESS,Stability of rootfinding for barycentric Lagrange interpolants, Numer. Algorithms, 65 (2014), pp. 447-464. · Zbl 1297.65051
[16] P. W. LAWRENCE, M. VANBAREL,ANDP. VANDOOREN,Backward error analysis of polynomial eigenvalue problems solved by linearization, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 123-144. · Zbl 1382.65101
[17] D. S. MACKEY, N. MACKEY, C. MEHL,ANDV. MEHRMANN,Vector spaces of linearizations for matrix polynomials, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 971-1004. · Zbl 1132.65027
[18] Y. NAKATSUKASA ANDV. NOFERINI,On the stability of computing polynomial roots via confederate linearizations, Math. Comp., 85 (2016), pp. 2391-2425. · Zbl 1347.65096
[19] Y. NAKATSUKASA, V. NOFERINI,ANDA. TOWNSEND,Vector spaces of linearizations for matrix polynomials: a bivariate polynomial approach, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 1-29. · Zbl 1355.65058
[20] V. NOFERINI ANDJ. PÉREZ,Chebyshev rootfinding via computing eigenvalues of colleague matrices: when is it stable?, Math. Comp., 86 (2017), pp. 1741-1767. · Zbl 1361.65029
[21] P. OPSOMER,Asymptotics for Orthogonal Polynomials and High-Frequency Scattering Problems, PhD. Thesis, Department of Computer Science, KU Leuven, Leuven, 2018.
[22] G. SZEGÖ,Orthogonal Polynomials, AMS, Providence, 1975. · Zbl 0305.42011
[23] L. N. TREFETHEN AND ET AL.,Chebfun version 6, 2017.
[24] P. VANDOOREN ANDP. DEWILDE,The eigenstructure of an arbitrary polynomial matrix: computational aspects, Linear Algebra Appl., 50 (1983), pp. 545-579. · Zbl 0507.65008
[25] D. S. WATKINS,The Matrix Eigenvalue Problem, SIAM, Philadelphia, 2007 · Zbl 1142.65038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.