×

Inverse problem for a nonlinear third order in time partial differential equation. (English) Zbl 1470.35438

Summary: In this article, we study the inverse problem of recovering a time-dependent coefficient of a nonlinear third order in time partial differential equation (PDE), which is usually referred to as Moore-Gibson-Thompson equation, from knowledge of a one boundary measurement.

MSC:

35R30 Inverse problems for PDEs
35G31 Initial-boundary value problems for nonlinear higher-order PDEs
35L35 Initial-boundary value problems for higher-order hyperbolic equations
Full Text: DOI

References:

[1] MooreFK, GibsonWE. Propagation of weak disturbances in a gas subject to relaxation effects. J Aerosp Sci. 1960;27(2):117‐127. · Zbl 0117.22104
[2] ThompsonPA. Compressible‐Fluid Dynamics. McGraw‐Hill; 1972. · Zbl 0251.76001
[3] CaixetaAH, LasieckaI, CavalcantiVND. Global attractors for a third order in time nonlinear dynamics. J Differ Equa. 2016;261(1):113‐147. · Zbl 1343.35033
[4] ContiM, PataV, QuintanillaR. Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature. Asympt Anal. 2020;120(1-2):1‐21. · Zbl 1458.35405
[5] Dell’OroF, PataV. On the Moore-Gibson-Thompson equation and its relation to linear viscoelasticity. Appl Math Optim. 2017;763:641‐655. · Zbl 1383.35052
[6] KaltenbacherB, LasieckaI, PospieszalskaMK. Well‐posedness and exponential decay of the energy in the nonlinear Jordan-Moore-Gibson-Thompson equation arising in high intensity ultrasound. Math Models Methods Appl Sci. 2012;22(11):1250035. · Zbl 1257.35131
[7] KaltenbacherB, NikolićV. The Jordan-Moore-Gibson-Thompson equation: well‐posedness with quadratic gradient nonlinearity and singular limit for vanishing relaxation time. Math Models Methods Appl Scie. 2019;29(13):2523‐2556. · Zbl 1427.35206
[8] KaltenbacherB. Mathematics of nonlinear acoustics. Evol Equa Control Theory. 2015;4(4):447‐491. · Zbl 1339.35003
[9] PellicerM, Said‐HouariB. Wellposedness and decay rates for the cauchy problem of the Moore-Gibson-Thompson equation arising in high intensity ultrasound. Appl Math Optim. 2019;80(2):447‐478. · Zbl 1425.35120
[10] TaraldsenG. A generalized Westervelt equation for nonlinear medical ultrasound. J Acoust Soc Am. 2001;109(4):1329‐1333.
[11] JordanPM. Second‐sound phenomena in inviscid, thermally relaxing gases. Discr Contin Dyn Syst‐B. 2014;19(7):2189. · Zbl 1302.76095
[12] KaltenbacherB, LasieckaI, MarchandR. Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound. Control Cybern. 2011;40:971‐988. · Zbl 1318.35080
[13] LasieckaIrena. Global solvability of Moore-Gibson-Thompson equation with memory arising in nonlinear acoustics. J Evol Equa. 2017;17(1):411‐441. · Zbl 1361.35146
[14] MarchandR, McDevittT, TriggianiR. An abstract semigroup approach to the third‐order Moore-Gibson-Thompson partial differential equation arising in high‐intensity ultrasound: structural decomposition, spectral analysis, exponential stability. Math Methods Appl Sci. 2012;35(15):1896‐1929. · Zbl 1255.35047
[15] ConejeroJA, LizamaC, Ródenas EscribáFDA. Chaotic behaviour of the solutions of the Moore-Gibson-Thompson equation. Appl Math Inform Sci. 2015;95:2233‐2238.
[16] KaltenbacherB, LasieckaI. Exponential decay for low and higher energies in the third order linear Moore-Gibson-Thompson equation with variable viscosity. Palest J Math. 2012;11:1‐10. · Zbl 1243.35022
[17] JordanPM. An analytical study of Kuznetsov’s equation: diffusive solitons, shock formation, and solution bifurcation. Phys Lett A. 2004;326(1-2):77‐84. · Zbl 1161.35475
[18] BoseSK, GorainGC. Stability of the boundary stabilised internally damped wave equation y′′ + y′′′ = c^2(δy + Δy′) in a bounded domain in \(\mathbb{R}^n\). Indian J Math. 1998;40(1):1‐15. · Zbl 0923.35091
[19] PellicerMarta, Solà‐MoralesJ. Optimal scalar products in the Moore-Gibson-Thompson equation. Evol Equa Control Theory. 2019;8(1):203. · Zbl 1426.35171
[20] BeilinS. Existence of solutions for one‐dimensional wave equations with nonlocal conditions. Electron J Differ Equa. 2001;76:1‐8. · Zbl 0994.35078
[21] BudakBM, SamarskiiAA, TikhonovAN. A Collection of Problems on Mathematical Physics: International Series of Monographs in Pure and Applied Mathematics, Vol. 52.Elsevier; 2013.
[22] ZachmanoglouEC, ThoeDW. Introduction to Partial Differential Equations With Applications. Courier Corporation; 1986. · Zbl 0655.34001
[23] ImanuvilovO, YamamotoM. Global uniqueness and stability in determining coefficients of wave equations, 26; 2001. · Zbl 0985.35108
[24] IsakovV. Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences. New York, (NY): Springer; 2006. · Zbl 1092.35001
[25] NamazovGK. Inverse Problems of the Theory of Equations of Mathematical Physics. Azerbaijan: Baku; 1984. (in Russian). · Zbl 0599.35002
[26] PrilepkoAI, OrlovskyDG, VasinIA. Methods for Solving Inverse Problems in Mathematical Physics, Pure and Applied Mathematics, vol. 231. New York, (NY): Marcel Dekker; 2000. · Zbl 0947.35173
[27] RomanovVG. Inverse Problems of Mathematical Physics. Utrecht, Netherlands: VNU Science Press BV; 1987.
[28] TekinI. Determination of a time‐dependent coefficient in a wave equation with unusual boundary condition. Filomat. 2019;33(9):2653‐2665. · Zbl 1499.35724
[29] Agrawal OmP. Solution for a fractional diffusion‐wave equation defined in a bounded domain. Nonlin Dyn. 2002;29(1-4):145‐155. · Zbl 1009.65085
[30] CanNH, LucNH, BaleanuD, ZhouY. Inverse source problem for time fractional diffusion equation with Mittag-Leffler kernel. Adv Differ Equa. 2020;2020(1):1‐18. · Zbl 1482.35272
[31] ChengJ, NakagawaJ, YamamotoM, YamazakiT. Uniqueness in an inverse problem for a one‐dimensional fractional diffusion equation. Inverse Problems. 2009;25(11):115002. · Zbl 1181.35322
[32] GongX, WeiT. Reconstruction of a time‐dependent source term in a time‐fractional diffusion‐wave equation. Inverse Probl Sci Eng. 2019;27(11):1577‐1594. · Zbl 1465.65089
[33] IsmailovMI, CicekM. Inverse source problem for a time‐fractional diffusion equation with nonlocal boundary conditions. Appl Math Modell. 2016;40(7-8):4891‐4899. · Zbl 1459.35395
[34] LopushanskyA, LopushanskaH. Inverse source Cauchy problem for a time fractional diffusion‐wave equation with distributions. Electronic J Differ Equa. 2017;182(2017):1‐14. · Zbl 1370.35282
[35] LucNH, HuynhLN, BaleanuD, CanNH. Identifying the space source term problem for a generalization of the fractional diffusion equation with hyper‐Bessel operator. Adv Differ Equa. 2020;2020(1):1‐23. · Zbl 1482.35253
[36] SlodickaM, SiskovaK, Van BockstalK. Uniqueness for an inverse source problem of determining a space dependent source in a time‐fractional diffusion equation. Appl Math Lett. 2019;91:15‐21. · Zbl 1409.35237
[37] GreinerW. Relativistic Quantum Mechanics‐Wave Equations, 3rd ed.Berlin: Springer; 2000. · Zbl 0998.81503
[38] WazwazA‐M. New travelling wave solutions to the Boussinesq and the Klein-Gordon equations. Commun Nonlin Sci Numer Simul. 2008;13(5):889‐901. · Zbl 1221.35372
[39] WazwazA‐M. The tanh method: exact solutions of the sine‐Gordon and the sinh‐Gordon equations. Appl Math Comput. 2005;16(2):1196‐1210. · Zbl 1082.65585
[40] WazwazA‐M. The integrable time‐dependent sine‐Gordon equation with multiple optical kink solutions. Optik. 2019;182:605‐610.
[41] WhithamGB. Linear and Nonlinear Waves. New York: Wiley-Interscience; 1999. · Zbl 0940.76002
[42] CannonJR, DuChateauP. An inverse problem for an unknown source term in a wave equation. SIAM J Appl Math. 1983;43(3):553‐564. · Zbl 0518.35081
[43] DenisovAM. Inverse problem for a semilinear functional‐differential wave equation. J Inverse Ill‐posed Probl. 2008;16(9):837‐848. · Zbl 1170.35099
[44] TekinI, MehraliyevYT, IsmailovMI. Existence and uniqueness of an inverse problem for nonlinear Klein-Gordon equation. Math Methods Appl Sci. 2019;42(10):3739‐3753. · Zbl 1418.35384
[45] LiuS, TriggianiR. An inverse problem for a third order PDE arising in high‐intensity ultrasound: global uniqueness and stability by one boundary measurement. J Inverse Ill‐Posed Probl. 2013;21(6):825‐869. · Zbl 1278.35267
[46] LecarosR, MercadoA, ZamoranoS. An inverse problem for Moore-Gibson-Thompson equation arising in high intensity ultrasound. arXiv preprint arXiv:2001.07673; 2020.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.