×

Uniform stability analysis of fractional-order BAM neural networks with delays in the leakage terms. (English) Zbl 1470.34205

Summary: A class of fractional-order BAM neural networks with delays in the leakage terms is considered. By using inequality technique and analysis method, several delay-dependent sufficient conditions are established to ensure the uniform stability of such networks. Moreover, the sufficient conditions guaranteeing the existence, uniqueness, and stability of the equilibrium point are also obtained. In addition, three simulation examples are given to demonstrate the effectiveness of the obtained results.

MSC:

34K20 Stability theory of functional-differential equations
34K37 Functional-differential equations with fractional derivatives

References:

[1] Kosko, B., Adaptive bidirectional associative memories, Applied Optics, 26, 23, 4947-4960 (1987)
[2] Cao, J.; Wang, L., Exponential stability and periodic oscillatory solution in BAM networks with delays, IEEE Transactions on Neural Networks, 13, 2, 457-463 (2002) · doi:10.1109/72.991431
[3] Park, J. H., A novel criterion for global asymptotic stability of BAM neural networks with time delays, Chaos, Solitons and Fractals, 29, 2, 446-453 (2006) · Zbl 1121.92006 · doi:10.1016/j.chaos.2005.08.018
[4] Ho, D. W.; Liang, J.; Lam, J., Global exponential stability of impulsive high-order BAM neural networks with time-varying delays, Neural Networks, 19, 10, 1581-1590 (2006) · Zbl 1178.68417 · doi:10.1016/j.neunet.2006.02.006
[5] Song, Q.; Cao, J., Global exponential stability of bidirectional associative memory neural networks with distributed delays, Journal of Computational and Applied Mathematics, 202, 2, 266-279 (2007) · Zbl 1120.34061 · doi:10.1016/j.cam.2006.02.031
[6] Lou, X.; Cui, B., New criteria on global exponential stability of BAM neural networks with distributed delays and reaction-diffusion terms, International Journal of Neural Systems, 17, 1, 43-52 (2007) · doi:10.1142/S0129065707000907
[7] Balasubramaniam, P.; Rakkiyappan, R., Global exponential stability for neutral-type BAM neural networks with time-varying delays, International Journal of Computer Mathematics, 87, 9, 2064-2075 (2010) · Zbl 1205.34091 · doi:10.1080/00207160802588544
[8] Sakthivel, R.; Samidurai, R.; Anthoni, S. M., New exponential stability criteria for stochastic BAM neural networks with impulses, Physica Scripta, 82, 4 (2010) · Zbl 1202.93101 · doi:10.1088/0031-8949/82/04/045802
[9] Li, C.; Li, C.; Liao, X.; Huang, T., Impulsive effects on stability of high-order BAM neural networks with time delays, Neurocomputing, 74, 10, 1541-1550 (2011) · doi:10.1016/j.neucom.2010.12.028
[10] Zhu, Q.; Cao, J., Stability analysis of markovian jump stochastic BAM neural networks with impulse control and mixed time delays, IEEE Transactions on Neural Networks and Learning Systems, 23, 3, 467-479 (2012) · doi:10.1109/TNNLS.2011.2182659
[11] Wang, Y.; Cao, J., Exponential stability of stochastic higher-order BAM neural networks with reaction-diffusion terms and mixed time-varying delays, Neurocomputing, 119, 192-200 (2013) · doi:10.1016/j.neucom.2013.03.040
[12] Zhang, A.; Qiu, J.; She, J., Existence and global exponential stability of periodic solution for high-order discrete-time BAM neural networks, Neural Networks, 50, 98-109 (2014) · Zbl 1302.93184 · doi:10.1016/j.neunet.2013.11.005
[13] Gopalsamy, K., Leakage delays in BAM, Journal of Mathematical Analysis and Applications, 325, 2, 1117-1132 (2007) · Zbl 1116.34058 · doi:10.1016/j.jmaa.2006.02.039
[14] Peng, S., Global attractive periodic solutions of BAM neural networks with continuously distributed delays in the leakage terms, Nonlinear Analysis: Real World Applications, 11, 3, 2141-2151 (2010) · Zbl 1239.34081 · doi:10.1016/j.nonrwa.2009.06.004
[15] Liu, B., Global exponential stability for BAM neural networks with time-varying delays in the leakage terms, Nonlinear Analysis: Real World Applications, 14, 1, 559-566 (2013) · Zbl 1260.34138 · doi:10.1016/j.nonrwa.2012.07.016
[16] Lakshmanan, S.; Park, J. H.; Lee, T. H.; Jung, H. Y.; Rakkiyappan, R., Stability criteria for BAM neural networks with leakage delays and probabilistic time-varying delays, Applied Mathematics and Computation, 219, 17, 9408-9423 (2013) · Zbl 1294.34075 · doi:10.1016/j.amc.2013.03.070
[17] Zhu, Q.; Rakkiyappan, R.; Chandrasekar, A., Stochastic stability of Markovian jump BAM neural networks with leakage delays and impulse control, Neurocomputing, 136, 136-151 (2014) · doi:10.1016/j.neucom.2014.01.018
[18] Podlubny, I., Fractional Differential Equations. Fractional Differential Equations, Mathematics in Science and Engineering, 198 (1999), Košice, Slovakia: Technical University of Kosice, Košice, Slovakia · Zbl 0918.34010
[19] Diethelm, K., The Analysis of Fractional Differential Equations, 2004 (2010), Berlin, Germany: Springer, Berlin, Germany · Zbl 1215.34001
[20] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204 (2006), Amsterdam, The Netherlands: Elsevier Science, Amsterdam, The Netherlands · Zbl 1092.45003
[21] Arena, P.; Caponetto, R.; Fortuna, L.; Porto, D., Bifurcation and chaos in noninteger order cellular neural networks, International Journal of Bifurcation and Chaos, 8, 7, 1527-1539 (1998) · Zbl 0936.92006
[22] Arena, P.; Fortuna, L.; Porto, D., Chaotic behavior in noninteger-order cellular neural networks, Physical Review E, 61, 1, 776-781 (2000)
[23] Zhou, S.; Li, H.; Zhu, Z., Chaos control and synchronization in a fractional neuron network system, Chaos, Solitons and Fractals, 36, 4, 973-984 (2008) · Zbl 1139.93320 · doi:10.1016/j.chaos.2006.07.033
[24] Boroomand, A.; Menhaj, M. B., Fractional-order Hopfield neural networks, Advances in Neuro-Information Processing. Advances in Neuro-Information Processing, Lecture Notes in Computer Science, 5506, 883-890 (2009), Berlin, Germany: Springer, Berlin, Germany · doi:10.1007/978-3-642-02490-0_108
[25] Yu, J.; Hu, C.; Jiang, H., \(α\)-stability and \(α\)-synchronization for fractional-order neural networks, Neural Networks, 35, 82-87 (2012) · Zbl 1258.34118 · doi:10.1016/j.neunet.2012.07.009
[26] Huang, X.; Zhao, Z.; Wang, Z.; Li, Y., Chaos and hyperchaos in fractional-order cellular neural networks, Neurocomputing, 94, 13-21 (2012) · doi:10.1016/j.neucom.2012.01.011
[27] Kaslik, E.; Sivasundaram, S., Nonlinear dynamics and chaos in fractional-order neural networks, Neural Networks, 32, 245-256 (2012) · Zbl 1254.34103 · doi:10.1016/j.neunet.2012.02.030
[28] Chen, L.; Qu, J.; Chai, Y.; Wu, R.; Qi, G., Synchronization of a class of fractional-order chaotic neural networks, Entropy, 15, 8, 3265-3276 (2013) · Zbl 1339.34060 · doi:10.3390/e15083355
[29] Chen, L.; Chai, Y.; Wu, R.; Ma, T.; Zhai, H., Dynamic analysis of a class of fractional-order neural networks with delay, Neurocomputing, 111, 190-194 (2013) · doi:10.1016/j.neucom.2012.11.034
[30] Chen, J.; Zeng, Z.; Jiang, P., Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks, Neural Networks, 51, 1-8 (2014) · Zbl 1306.34006 · doi:10.1016/j.neunet.2013.11.016
[31] Alofi, A.; Cao, J.; Elaiw, A.; Al-Mazrooei, A., Delay-dependent stability criterion of Caputo fractional neural networks with distributed delay, Discrete Dynamics in Nature and Society, 2014 (2014) · Zbl 1418.92005 · doi:10.1155/2014/529358
[32] Yu, J.; Hu, C.; Jiang, H.; Fan, X., Projective synchronization for fractional neural networks, Neural Networks, 49, 87-95 (2014) · Zbl 1296.34133 · doi:10.1016/j.neunet.2013.10.002
[33] Meyer-Base, A.; Roberts, R.; Thummler, V., Local uniform stability of competitive neural networks with different time-scales under vanishing perturbations, Neurocomputing, 73, 4-6, 770-775 (2010) · doi:10.1016/j.neucom.2009.10.003
[34] Arbi, A.; Aouiti, C.; Touati, A., Uniform asymptotic stability and global asymptotic stability for time-delay Hopfield neural networks, IFIP Advances in Information and Communication Technology, 381, 1, 483-492 (2012) · doi:10.1007/978-3-642-33409-2_50
[35] Rakkiyappan, R.; Cao, J.; Velmurugan, G., Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays, IEEE Transactions on Neural Networks and Learning Systems (2014) · Zbl 1331.34154 · doi:10.1109/TNNLS.2014.2311099
[36] Hou, Z.; Zhu, H.; Feng, C., Existence and global uniform asymptotic stability of almost periodic solutions for cellular neural networks with discrete and distributed delays, Journal of Applied Mathematics, 2013 (2013) · Zbl 1397.92021 · doi:10.1155/2013/516293
[37] Dong, H.; Wang, Z.; Gao, H., Distributed \(H_\infty\) filtering for a class of Markovian jump nonlinear time-delay systems over lossy sensor networks, IEEE Transactions on Industrial Electronics, 60, 10, 4665-4672 (2013) · doi:10.1109/TIE.2012.2213553
[38] Shen, B.; Wang, Z.; Ding, D.; Shu, H., \(H_\infty\) state estimation for complex networks with uncertain inner coupling and incomplete measurements, IEEE Transactions on Neural Networks and Learning Systems, 24, 12, 2027-2037 (2013) · doi:10.1109/TNNLS.2013.2271357
[39] Qin, L.; He, X.; Zhou, D. H., A survey of fault diagnosis for swarm systems, Systems Science & Control Engineering, 2, 1, 13-23 (2014)
[40] Liu, Q.; Wang, Z.; He, X.; Zhou, D. H., A survey of event-based strategies on control and estimation, Systems Science & Control Engineering, 2, 1, 90-97 (2014)
[41] Shen, B., A survey on the applications of the Krein-space theory in signal estimation, Systems Science & Control Engineering, 2, 1, 143-149 (2014)
[42] Hu, J.; Wang, Z.; Shen, B.; Gao, H., Quantised recursive filtering for a class of nonlinear systems with multiplicative noises and missing measurements, International Journal of Control, 86, 4, 650-663 (2013) · Zbl 1278.93269 · doi:10.1080/00207179.2012.756149
[43] He, X.; Wang, Z.; Wang, X.; Zhou, D. H., Networked strong tracking filtering with multiple packet dropouts: algorithms and applications, IEEE Transactions on Industrial Electronics, 61, 3, 1454-1463 (2014) · doi:10.1109/TIE.2013.2261038
[44] Wang, Z.; Ding, D.; Dong, H.; Shu, H., \(H_\infty\) consensus control for multi-agent systems with missing measurements: the finite-horizon case, Systems & Control Letters, 62, 10, 827-836 (2013) · Zbl 1281.93010 · doi:10.1016/j.sysconle.2013.06.004
[45] Wang, Z.; Dong, H.; Shen, B.; Gao, H., Finite-horizon \(H_\infty\) filtering with missing measurements and quantization effects, IEEE Transactions on Automatic Control, 58, 7, 1707-1718 (2013) · Zbl 1369.93660 · doi:10.1109/TAC.2013.2241492
[46] Dong, H.; Wang, Z.; Gao, H., Fault detection for Markovian jump systems with sensor saturations and randomly varying nonlinearities, IEEE Transactions on Circuits and Systems I, 59, 10, 2354-2362 (2012) · Zbl 1468.94903 · doi:10.1109/TCSI.2012.2185330
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.