×

The existence of positive solutions for fractional differential equations with integral and disturbance parameter in boundary conditions. (English) Zbl 1470.34016

Summary: We study the existence and nonexistence of the positive solutions for the integral boundary value problem of the fractional differential equations with the disturbance parameter \(a\) in the boundary conditions and the impact of the disturbance parameter \(a\) on the existence of positive solutions. By using the upper and lower solutions method, fixed point index theory and the Schauder fixed point theorem, we obtain sufficient conditions for that the problem has at least one positive solution, two positive solutions and no solutions. Under certain conditions, we also obtain the demarcation point which divides the disturbance parameters into two subintervals such that the boundary value problem has positive solutions for the disturbance parameter in one subinterval while no positive solutions in the other.

MSC:

34A08 Fractional ordinary differential equations
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations

References:

[1] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives (1993), Yverdon, Switzerland: Gordon and Breach Science Publishers, Yverdon, Switzerland · Zbl 0818.26003
[2] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations, 204 (2006), Amsterdam, The Netherlands: Elsevier Science, Amsterdam, The Netherlands · Zbl 1092.45003
[3] Diethelm, K., The Analysis of Fractional Differential Equations, 2004 (2010), Berlin, Germany: Springer, Berlin, Germany · Zbl 1215.34001 · doi:10.1007/978-3-642-14574-2
[4] Diethelm, K.; Freed, A. D.; Keil, F.; Mackens, W.; Voss, H.; Werther, J., On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity, Science Computing in Chemical Engineering—Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, 217-224 (1999), Heidelberg, Germany: Springer, Heidelberg, Germany
[5] Hilfer, R., Applications of Fractional Calculus in Physics (2000), Singapore: World Scientific, Singapore · Zbl 0998.26002 · doi:10.1142/9789812817747
[6] Lakshmikantham, V.; Leela, S.; Vasundhara, J., Theory of Fractional Dynamic Systems (2009), Cambridge, UK: Cambridge Academic Publisher, Cambridge, UK · Zbl 1188.37002
[7] Podlubny, I., Fractional Ddifferential Equations, 198 (1999), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0924.34008
[8] Schiessel, H.; Metzler, R.; Blumen, A.; Nonnenmacher, T. F., Generalized viscoelastic models: their fractional equations with solutions, Journal of Physics A, 28, 23, article 012, 6567-6584 (1995) · Zbl 0921.73154 · doi:10.1088/0305-4470/28/23/012
[9] Ibrahim, R. W.; Darus, M., Subordination and superordination for univalent solutions for fractional differential equations, Journal of Mathematical Analysis and Applications, 345, 2, 871-879 (2008) · Zbl 1147.30009 · doi:10.1016/j.jmaa.2008.05.017
[10] Ladaci, S.; Loiseau, J. J.; Charef, A., Fractional order adaptive high-gain controllers for a class of linear systems, Communications in Nonlinear Science and Numerical Simulation, 13, 4, 707-714 (2008) · Zbl 1221.93128 · doi:10.1016/j.cnsns.2006.06.009
[11] Wang, J.; Zhou, Y.; Wei, W.; Xu, H., Nonlocal problems for fractional integrodifferential equations via fractional operators and optimal controls, Computers & Mathematics with Applications, 62, 3, 1427-1441 (2011) · Zbl 1228.45015 · doi:10.1016/j.camwa.2011.02.040
[12] Xu, Y.; He, Z., The short memory principle for solving Abel differential equation of fractional order, Computers & Mathematics with Applications, 62, 12, 4796-4805 (2011) · Zbl 1236.34008 · doi:10.1016/j.camwa.2011.10.071
[13] Keener, J. P., Principles of Applied Mathematics (1988), Redwood City, Calif, USA: Addison-Wesley, Redwood City, Calif, USA · Zbl 0649.00002
[14] Meyer, G. H., Initial Value Methods for Boundary Value Problems (1973), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0304.34018
[15] Thomas, L. H., The calculation of atomic fields, Proceedings of the Cambridge Philosophical Society, 23, 5, 542-548 (1927) · JFM 53.0868.04 · doi:10.1017/S0305004100011683
[16] Esteban, J. R.; Vázquez, J. L., On the equation of turbulent filtration in one-dimensional porous media, Nonlinear Analysis: Theory, Methods & Applications, 10, 11, 1303-1325 (1986) · Zbl 0613.76102 · doi:10.1016/0362-546X(86)90068-4
[17] Kilbas, A. A.; Marzan, S. A., Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions, Journal of Differential Equations, 41, 1, 82-89 (2005) · Zbl 1160.34301 · doi:10.1007/s10625-005-0137-y
[18] Zhang, S., Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electronic Journal of Differential Equations, 2006, 36, 1-12 (2006) · Zbl 1096.34016
[19] Liu, X.; Jia, M.; Wu, B., Existence and uniqueness of solution for fractional differential equations with integral boundary conditions, Electronic Journal of Qualitative Theory of Differential Equations, 69, 1-10 (2009) · Zbl 1201.34010
[20] Jia, M.; Liu, X., Three nonnegative solutions for fractional differential equations with integral boundary conditions, Computers & Mathematics with Applications, 62, 3, 1405-1412 (2011) · Zbl 1235.34016 · doi:10.1016/j.camwa.2011.03.026
[21] Liu, X.; Jia, M., Multiple solutions for fractional differential equations with nonlinear boundary conditions, Computers & Mathematics with Applications, 59, 8, 2880-2886 (2010) · Zbl 1193.34037 · doi:10.1016/j.camwa.2010.02.005
[22] Rida, S. Z.; El-Sherbiny, H. M.; Arafa, A. A. M., On the solution of the fractional nonlinear Schrödinger equation, Physics Letters A, 372, 5, 553-558 (2008) · Zbl 1217.81068 · doi:10.1016/j.physleta.2007.06.071
[23] Barrett, J. H., Differential equations of non-integer order, Canadian Journal of Mathematics, 6, 529-541 (1954) · Zbl 0058.10702
[24] Al-Refai, M.; Hajji, M. A., Monotone iterative sequences for nonlinear boundary value problems of fractional order, Nonlinear Analysis: Theory, Methods & Applications, 74, 11, 3531-3539 (2011) · Zbl 1219.34005 · doi:10.1016/j.na.2011.03.006
[25] Lin, L.; Liu, X.; Fang, H., Method of upper and lower solutions for fractional differential equations, Electronic Journal of Differential Equations, 2012, 100, 1-13 (2012) · Zbl 1260.34026
[26] Bai, Z.; Lü, H., Positive solutions for boundary value problem of nonlinear fractional differential equation, Journal of Mathematical Analysis and Applications, 311, 2, 495-505 (2005) · Zbl 1079.34048 · doi:10.1016/j.jmaa.2005.02.052
[27] Bai, Z.; Qiu, T., Existence of positive solution for singular fractional differential equation, Applied Mathematics and Computation, 215, 7, 2761-2767 (2009) · Zbl 1185.34004 · doi:10.1016/j.amc.2009.09.017
[28] Jiang, D.; Yuan, C., The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application, Nonlinear Analysis: Theory, Methods & Applications, 72, 2, 710-719 (2010) · Zbl 1192.34008 · doi:10.1016/j.na.2009.07.012
[29] Li, C. F.; Luo, X. N.; Zhou, Y., Existence of positive solutions of the boundary value problem for nonlinear fractional differential equations, Computers & Mathematics with Applications, 59, 3, 1363-1375 (2010) · Zbl 1189.34014 · doi:10.1016/j.camwa.2009.06.029
[30] Webb, J. R. L.; Infante, G., Positive solutions of nonlocal boundary value problems involving integral conditions, NoDEA. Nonlinear Differential Equations and Applications, 15, 1-2, 45-67 (2008) · Zbl 1148.34021 · doi:10.1007/s00030-007-4067-7
[31] Webb, J. R. L.; Infante, G., Positive solutions of nonlocal boundary value problems: a unified approach, Journal of the London Mathematical Society, 74, 3, 673-693 (2006) · Zbl 1115.34028 · doi:10.1112/S0024610706023179
[32] Yang, Z., Positive solutions to a system of second-order nonlocal boundary value problems, Nonlinear Analysis: Theory, Methods & Applications, 62, 7, 1251-1265 (2005) · Zbl 1089.34022 · doi:10.1016/j.na.2005.04.030
[33] Feng, M.; Ji, D.; Ge, W., Positive solutions for a class of boundary-value problem with integral boundary conditions in Banach spaces, Journal of Computational and Applied Mathematics, 222, 2, 351-363 (2008) · Zbl 1158.34336 · doi:10.1016/j.cam.2007.11.003
[34] Xi, S.; Jia, M.; Ji, H., Multiple nonnegative solutions for second-order boundary-value problems with sign-changing nonlinearities, Electronic Journal of Differential Equations, 2009, 66, 1-10 (2009) · Zbl 1176.34029
[35] Kong, L.; Kong, Q., Second-order boundary value problems with nonhomogeneous boundary conditions. I, Mathematische Nachrichten, 278, 1-2, 173-193 (2005) · Zbl 1060.34005 · doi:10.1002/mana.200410234
[36] Kong, L.; Kong, Q., Second-order boundary value problems with nonhomogeneous boundary conditions. II, Journal of Mathematical Analysis and Applications, 330, 2, 1393-1411 (2007) · Zbl 1119.34009 · doi:10.1016/j.jmaa.2006.08.064
[37] Kong, L.; Kong, Q., Higher order boundary value problems with nonhomogeneous boundary conditions, Nonlinear Analysis: Theory, Methods & Applications, 72, 1, 240-261 (2010) · Zbl 1191.34032 · doi:10.1016/j.na.2009.06.050
[38] Guo, D. J.; Lakshmikantham, V., Nonlinear Problems in Abstract Cones, 5 (1988), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0661.47045
[39] Deimling, K., Nonlinear Functional Analysis (1984), Berlin, Germany: Springer, Berlin, Germany
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.