×

Differential transform method for the solutions to some initial value problems in chemistry. (English) Zbl 1470.34006

Summary: Under investigation in the present work are such problems in chemistry governed by differential equations. We show that, exact analytical solutions for some chemical problems could be sought by means of the Differential transform method. Actually in the calculation process, based on the differential transform, the original differential equations is first converted to a series of algebraic equations, which could be easily solved via symbolic computing software, then with the aid of the differential inverse transform one would properly seek the exact analytical solutions to these chemical problems. In particular, four typical chemical problems are studied as examples to illustrate the effectiveness of the method.

MSC:

34A05 Explicit solutions, first integrals of ordinary differential equations
34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
34A25 Analytical theory of ordinary differential equations: series, transformations, transforms, operational calculus, etc.
Full Text: DOI

References:

[1] Xu, Z., Numerical simulation of the coalescence of two bubbles in an ultrasound field, Ultrason. Sonochem., 49, 277-282 (2018) · doi:10.1016/j.ultsonch.2018.08.014
[2] Yasui, K.; Tuziuti, T.; Lee, J.; Kozuka, T.; Towata, A.; Iida, Y., The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions, J. Chem. Phys., 128, 184705 (2008) · doi:10.1063/1.2919119
[3] Tong, X.; Simos, TE, A complete in phase FinitDiff procedure for DiffEquns in chemistry, J. Math. Chem., 58, 407-438 (2020) · Zbl 1433.81168 · doi:10.1007/s10910-019-01095-0
[4] Khalsaraei, MM; Shokri, A.; Molayi, M., The new class of multistep multiderivative hybrid methods for the numerical solution of chemical stiff systems of first order IVPs, J. Math. Chem., 58, 1987-2012 (2020) · Zbl 1448.92399 · doi:10.1007/s10910-020-01160-z
[5] Roul, P., A new mixed MADM-Collocation approach for solving a class of Lane-Emden singular boundary value problems, J. Math. Chem., 57, 945-969 (2019) · Zbl 1414.92239 · doi:10.1007/s10910-018-00995-x
[6] Madduri, H.; Roul, P., A fast-converging iterative scheme for solving a system of Lane-Emden equations arising in catalytic diffusion reactions, J. Math. Chem., 57, 570-582 (2019) · Zbl 1414.92236 · doi:10.1007/s10910-018-0964-8
[7] Qin, YP; Wang, Z.; Zou, L., Dynamics of nonlinear transversely vibrating beams: Parametric and closed-form solutions, Appl. Math. Modell., 88, 676-687 (2020) · Zbl 1481.74296 · doi:10.1016/j.apm.2020.06.056
[8] Qin, YP; Lou, QJ; Wang, Z.; Zou, L., Kudryashov and Sinelshchikov’s method for solving the radial oscillation problem of multielectron bubbles in liquid helium, J. Math. Chem., 58, 1481-1488 (2020) · Zbl 1447.82036 · doi:10.1007/s10910-020-01145-y
[9] Qin, YP, Analytical solution for the collapse motion of an empty hyper-spherical bubble in \(N\) dimensions, Phys. Lett. A, 384, 126142 (2020) · Zbl 1448.76143 · doi:10.1016/j.physleta.2019.126142
[10] Qin, YP; Wang, Z.; Zou, L.; He, MF, Parametric analytical solution for the \(N\)-dimensional Rayleigh equation, Appl. Math. Lett., 76, 8-13 (2018) · Zbl 1460.76799 · doi:10.1016/j.aml.2017.08.001
[11] Scholz, G.; Scholz, F., First-order differential equations in chemistry, ChemTexts, 1, 1 (2014) · doi:10.1007/s40828-014-0001-x
[12] He, JH; Ji, FY, Taylor series solution for Lane-Emden equation, J. Math. Chem., 57, 1932-1934 (2019) · Zbl 1429.34027 · doi:10.1007/s10910-019-01048-7
[13] Odibat, Z., An optimized decomposition method for nonlinear ordinary and partial differential equations, Phys. A, 541, 123323 (2020) · Zbl 07527037 · doi:10.1016/j.physa.2019.123323
[14] Wang, Z.; Qin, YP; Zou, L., Analytical solutions of the Rayleigh-Plesset equation for \(N\)-dimensional spherical bubbles, Sci. China Phys. Mech. Astron., 60, 104721 (2017) · doi:10.1007/s11433-017-9074-x
[15] Zhou, JK, Differential transformation and its application for electrical circutits (1986), Wuhan: Huazhong University Press, Wuhan
[16] Qin, YP; Wang, Z.; Zou, L.; He, MF, Semi-numerical, semi-analytical approximations of the Rayleigh equation for gas-filled hyper-spherical bubble, Int. J. Comput. Meth., 16, 1850094 (2019) · Zbl 1404.76264 · doi:10.1142/S0219876218500949
[17] Lin, YW; Chang, KH; Chen, CK, Hybrid differential transform method/smoothed particle hydrodynamics and DT/finite difference method for transient heat conduction problems, Int. Commun. Heat. Mass Trans., 113, 104495 (2020) · doi:10.1016/j.icheatmasstransfer.2020.104495
[18] Owyed, S.; Abdou, MA; Abdel-Aty, AH; Alharbi, W.; Nekhilie, R., Numerical and approximate solutions for coupled time fractional nonlinear evolutions equations via reduced differential transform method, Chaos Soliton Fract., 131, 109474 (2020) · Zbl 1495.35197 · doi:10.1016/j.chaos.2019.109474
[19] Zou, L.; Wang, Z.; Zong, Z., Generalized differential transform method to differential-difference equation, Phys. Lett. A, 373, 4142 (2009) · Zbl 1234.35235 · doi:10.1016/j.physleta.2009.09.036
[20] Tari, A.; Shahmorad, S., Differential transform method for the system of two-dimensional nonlinear Volterra integro-differential equations, Comput. Math. Appl., 61, 2621-2629 (2011) · Zbl 1221.65344 · doi:10.1016/j.camwa.2011.03.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.