×

Bounding the degrees of a minimal \(\mu\)-basis for a rational surface parametrization. (English) Zbl 1470.13022

Summary: In this paper, we study how the degrees of the elements in a minimal \(\mu\)-basis of a parametrized surface behave. For an arbitrary rational surface parametrization \(P(s, t) = (a_1(s, t), a_2(s, t), a_3(s, t), a_4(s, t)) \in \mathbb{F} [s, t]^4\) over an infinite field \(\mathbb{F}\), we show the existence of a \(\mu\)-basis with polynomials bounded in degree by \(O(d^{33})\), where \(d = \max(\deg(a_1), \deg(a_2), \deg(a_3), \deg(a_4))\). Under additional assumptions we can obtain tighter bounds.

MSC:

13D02 Syzygies, resolutions, complexes and commutative rings
14Q10 Computational aspects of algebraic surfaces
68W30 Symbolic computation and algebraic computation

Software:

SINGULAR

References:

[1] Avramov, L. L.; Conca, A.; Iyengar, S. B., Subadditivity of syzygies of Koszul algebras, Math. Ann., 361, 1-2, 511-534 (2015) · Zbl 1333.13021
[2] Bayer, D.; Stillman, M., On the complexity of computing syzygies, J. Symb. Comput., 6, 2-3, 135-147 (1988), computational aspects of commutative algebra · Zbl 0667.68053
[3] Bruns, W.; Herzog, J., Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, vol. 39 (1993), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0788.13005
[4] Buchsbaum, D. A.; Eisenbud, D., Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, Am. J. Math., 99, 3, 447-485 (1977) · Zbl 0373.13006
[5] Busé, L., On the equations of the moving curve ideal of a rational algebraic plane curve, J. Algebra, 321, 8, 2317-2344 (2009) · Zbl 1168.14027
[6] Busé, L.; Cid-Ruiz, Y.; D’Andrea, C., Degree and birationality of multi-graded rational maps (2018), ArXiv e-prints:
[7] Caniglia, L.; Cortiñas, G.; Danón, S.; Heintz, J.; Krick, T.; Solernó, P., Algorithmic aspects of Suslin’s proof of Serre’s conjecture, Comput. Complex., 3, 1, 31-55 (1993) · Zbl 0824.68049
[8] Chen, F.; Cox, D.; Liu, Y., The \(μ\)-basis and implicitization of a rational parametric surface, J. Symb. Comput., 39, 6, 689-706 (2005) · Zbl 1120.14054
[9] Chen, F.; Sederberg, T., A new implicit representation of a planar rational curve with high order singularity, Comput. Aided Geom. Des., 19, 2, 151-167 (2002) · Zbl 0995.68134
[10] Chen, F.; Wang, W., Revisiting the \(μ\)-basis of a rational ruled surface, J. Symb. Comput., 36, 5, 699-716 (2003) · Zbl 1037.14014
[11] Chen, F.; Wang, W.; Liu, Y., Computing singular points of plane rational curves, J. Symb. Comput., 43, 2, 92-117 (2008) · Zbl 1130.14039
[12] Chen, F.; Zheng, J.; Sederberg, T. W., The mu-basis of a rational ruled surface, Comput. Aided Geom. Des., 18, 1, 61-72 (2001) · Zbl 0972.68158
[13] Cid-Ruiz, Y., A \(D\)-module approach on the equations of the Rees algebra, J. Commut. Algebra (2017), in press, ArXiv e-prints
[14] Cortadellas Benítez, T.; D’Andrea, C., Minimal generators of the defining ideal of the Rees algebra associated to monoid parameterizations, Comput. Aided Geom. Des., 27, 6, 461-473 (2010) · Zbl 1210.65036
[15] Cortadellas Benítez, T.; D’Andrea, C., Minimal generators of the defining ideal of the Rees algebra associated with a rational plane parametrization with \(\mu = 2\), Can. J. Math., 66, 6, 1225-1249 (2014) · Zbl 1310.13007
[16] Cortadellas Benítez, T.; D’Andrea, C., The Rees algebra of a monomial plane parametrization, J. Symb. Comput., 70, 71-105 (2015) · Zbl 1327.13018
[17] Cox, D.; Hoffman, J. W.; Wang, H., Syzygies and the Rees algebra, J. Pure Appl. Algebra, 212, 7, 1787-1796 (2008) · Zbl 1151.13012
[18] Cox, D. A., Equations of parametric curves and surfaces via syzygies, (Symbolic Computation: Solving Equations in Algebra, Geometry, and Engineering. Symbolic Computation: Solving Equations in Algebra, Geometry, and Engineering, South Hadley, MA, 2000. Symbolic Computation: Solving Equations in Algebra, Geometry, and Engineering. Symbolic Computation: Solving Equations in Algebra, Geometry, and Engineering, South Hadley, MA, 2000, Contemp. Math., vol. 286 (2001), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 1-20 · Zbl 1009.68174
[19] Cox, D. A., The moving curve ideal and the Rees algebra, Theor. Comput. Sci., 392, 1-3, 23-36 (2008) · Zbl 1170.13004
[20] Cox, D. A.; Little, J.; O’Shea, D., Using Algebraic Geometry, Graduate Texts in Mathematics, vol. 185 (2005), Springer: Springer New York · Zbl 1079.13017
[21] Cox, D. A.; Sederberg, T. W.; Chen, F., The moving line ideal basis of planar rational curves, Comput. Aided Geom. Des., 15, 8, 803-827 (1998) · Zbl 0908.68174
[22] Decker, W.; Greuel, G.-M.; Pfister, G.; Schönemann, H., Singular 4-1-1 — a computer algebra system for polynomial computations (2018)
[23] Diesel, S. J., Irreducibility and dimension theorems for families of height 3 Gorenstein algebras, Pac. J. Math., 172, 2, 365-397 (1996) · Zbl 0882.13021
[24] Dohm, M., Implicitization of rational ruled surfaces with \(μ\)-bases, J. Symb. Comput., 44, 5, 479-489 (2009) · Zbl 1159.14309
[25] Eisenbud, D., Commutative Algebra: With a View Toward Algebraic Geometry, Graduate Texts in Mathematics, vol. 150 (1995), Springer-Verlag: Springer-Verlag New York · Zbl 0819.13001
[26] (Elias, J.; Giral, J. M.; Miró-Roig, R. M.; Zarzuela, S., Six Lectures on Commutative Algebra. Six Lectures on Commutative Algebra, Modern Birkhäuser Classics (2010), Birkhäuser Verlag: Birkhäuser Verlag Basel), papers from the Summer School on Commutative Algebra held in Bellaterra, July 16-26, 1996, Reprint of the 1998 edition · Zbl 1182.13001
[27] Hong, J.; Simis, A.; Vasconcelos, W. V., On the homology of two-dimensional elimination, J. Symb. Comput., 43, 4, 275-292 (2008) · Zbl 1139.13013
[28] Jia, X.; Goldman, R., \(μ\)-bases and singularities of rational planar curves, Comput. Aided Geom. Des., 26, 9, 970-988 (2009) · Zbl 1205.14033
[29] Kaplansky, I., Commutative Rings (1974), The University of Chicago Press: The University of Chicago Press Chicago, Ill.-London · Zbl 0203.34601
[30] Kustin, A.; Polini, C.; Ulrich, B., Rational normal scrolls and the defining equations of Rees algebras, J. Reine Angew. Math., 650, 23-65 (2011) · Zbl 1211.13005
[31] Kustin, A.; Polini, C.; Ulrich, B., The equations defining blowup algebras of height three Gorenstein ideals, Algebra Number Theory, 11, 7, 1489-1525 (2017) · Zbl 1386.13014
[32] Lam, T. Y., Serre’s Problem on Projective Modules, Springer Monographs in Mathematics (2006), Springer-Verlag: Springer-Verlag Berlin · Zbl 1101.13001
[33] Lang, S., Algebra, Graduate Texts in Mathematics, vol. 211 (2002), Springer-Verlag: Springer-Verlag New York · Zbl 0984.00001
[34] Lazard, D., Algèbre linéaire sur \(K [X_1, \cdots, X_n]\), et élimination, Bull. Soc. Math. Fr., 105, 2, 165-190 (1977) · Zbl 0447.13008
[35] Lazard, D., A note on upper bounds for ideal-theoretic problems, J. Symb. Comput., 13, 3, 231-233 (1992) · Zbl 0787.13010
[36] Lombardi, H.; Yengui, I., Suslin’s algorithms for reduction of unimodular rows, J. Symb. Comput., 39, 6, 707-717 (2005) · Zbl 1120.13034
[37] Matsumura, H., Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, vol. 8 (1989), Cambridge University Press · Zbl 0666.13002
[38] Migliore, J.; Miró-Roig, R. M., On the minimal free resolution of \(n + 1\) general forms, Trans. Am. Math. Soc., 355, 1, 1-36 (2003) · Zbl 1053.13005
[39] Migliore, J., Nagel, U., 2002. Liaison and related topics: notes from the Torino workshop/school. ArXiv Mathematics e-prints.; Migliore, J., Nagel, U., 2002. Liaison and related topics: notes from the Torino workshop/school. ArXiv Mathematics e-prints. · Zbl 1172.13305
[40] (Peeva, I., Syzygies and Hilbert Functions. Syzygies and Hilbert Functions, Lecture Notes in Pure and Applied Mathematics, vol. 254 (2007), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton, FL) · Zbl 1113.14004
[41] Peeva, I., Graded Syzygies, Algebra and Applications, vol. 14 (2011), Springer-Verlag London, Ltd.: Springer-Verlag London, Ltd. London · Zbl 1213.13002
[42] Peeva, I.; Sturmfels, B., Syzygies of codimension 2 lattice ideals, Math. Z., 229, 1, 163-194 (1998) · Zbl 0918.13006
[43] Rotman, J. J., An Introduction to Homological Algebra, Pure and Applied Mathematics, vol. 85 (1979), Academic Press, Inc. · Zbl 0441.18018
[44] Szanto, A., Solving over-determined systems by the subresultant method, J. Symb. Comput., 43, 1, 46-74 (2008), with an appendix by Marc Chardin · Zbl 1132.13312
[45] Vasconcelos, W. V., On the equations of Rees algebras, J. Reine Angew. Math., 418, 189-218 (1991) · Zbl 0727.13002
[46] Yap, C.-K., A new lower bound construction for commutative Thue systems with applications, J. Symb. Comput., 12, 1, 1-27 (1991) · Zbl 0731.68060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.