×

Unique reconstruction of simple magnetizations from their magnetic potential. (English) Zbl 1469.86013

Summary: Inverse problems arising in (geo)magnetism are typically ill-posed, in particular they exhibit non-uniqueness. Nevertheless, there exist nontrivial model spaces on which the problem is uniquely solvable. Our goal is here to describe such spaces that accommodate constraints suited for applications. In this paper we treat the inverse magnetization problem on a Lipschitz domain with fairly general topology. We characterize the subspace of \(L^2\)-vector fields that causes non-uniqueness, and identify a subspace of harmonic gradients on which the inversion becomes unique. This classification has consequences for applications and we present some of them in the context of geo-sciences. In the second part of the paper, we discuss the space of piecewise constant vector fields. This vector space is too large to make the inversion unique. But as we show, it contains a dense subspace in \(L^2\) on which the problem becomes uniquely solvable, i.e. magnetizations from this subspace are uniquely determined by their magnetic potential.

MSC:

86A25 Geo-electricity and geomagnetism

Software:

pycpd

References:

[1] Backus, G.; Parker, R.; Constable, C., Foundations of Geomagnetism (1996), Cambridge: Cambridge University Press, Cambridge
[2] Blakely, R. J., Potential Theory in Gravity and Magnetic Applications (1995), Cambridge: Cambridge University Press, Cambridge
[3] Runcorn, S. K., An ancient lunar magnetic dipole field, Nature, 253, 701-703 (1975) · doi:10.1038/253701a0
[4] Gubbins, D.; Ivers, D.; Masterton, S. M.; Winch, D. E., Analysis of lithospheric magnetization in vector spherical harmonics, Geophys. J. Int., 187, 99-117 (2011) · doi:10.1111/j.1365-246x.2011.05153.x
[5] Masterton, S. M.; Gubbins, D.; Müller, R. D.; Singh, K. H., Forward modelling of oceanic lithospheric magnetization, Geophys. J. Int., 192, 951-962 (2013) · doi:10.1093/gji/ggs063
[6] Bouligand, C.; Glen, J. M G.; Blakely, R. J., Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization, J. Geophys. Res., 114 (2009) · doi:10.1029/2009jb006494
[7] Maus, S.; Gordon, D.; Fairhead, D., Curie-temperature depth estimation using a self-similar magnetization model, Geophys. J. Int., 129, 163-168 (1997) · doi:10.1111/j.1365-246x.1997.tb00945.x
[8] Groot, L. V.; Fabian, K.; Béguin, A.; Reith, P.; Barnhoorn, A.; Hilgenkamp, H., Determining individual particle magnetizations in assemblages of micrograins, Geophys. Res. Lett., 45, 2995-3000 (2018) · doi:10.1002/2017gl076634
[9] Michel, V., Regularized wavelet-based multiresolution recovery of the harmonic mass density distribution from data of the Earth’s gravitational field at satellite height, Inverse Problems, 21, 997-1025 (2005) · Zbl 1205.86037 · doi:10.1088/0266-5611/21/3/013
[10] Michel, V.; Fokas, A. S., A unified approach to various techniques for the non-uniqueness of the inverse gravimetric problem and wavelet-based methods, Inverse Problems, 24 (2008) · Zbl 1168.35047 · doi:10.1088/0266-5611/24/4/045019
[11] Isakov, V., Inverse Source Problems (1990), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0721.31002
[12] Isakov, V.; Leung, S.; Qian, J., A three-dimensional inverse gravimetry problem for ice with snow caps, Inverse Problems Imaging, 7, 523-544 (2013) · Zbl 1264.86012 · doi:10.3934/ipi.2013.7.523
[13] Sampietro, D.; Sansò, F.; Sneeuw, N.; Novák, P.; Crespi, M.; Sansò, F., Uniqueness theorems for inverse gravimetric problems, VII Hotine-Marussi Symposium on Mathematical Geodesy, 111-115 (2012), Berlin: Springer, Berlin
[14] Vervelidou, F.; Lesur, V., Unveiling Earth’s hidden magnetization, Geophys. Res. Lett., 45, 283-292 (2018) · doi:10.1029/2018gl079876
[15] Lima, E., Fast inversion of magnetic field maps of unidirectional planar geological magnetization, J. Geophys. Res.: Solid Earth, 118, 1-30 (2013) · doi:10.1002/jgrb.50229
[16] Vervelidou, F.; Lesur, V.; Morschhauser, A.; Grott, M.; Thomas, P., On the accuracy of palaeopole estimations from magnetic field measurements, Geophys. J. Int., 211, 1669-1678 (2017) · doi:10.1093/gji/ggx400
[17] Baratchart, L.; Gerhards, C.; Kegeles, A., Decomposition of L^2-vector fields on Lipschitz surfaces: characterization via null-spaces of the scalar potential, SIAM J. Math. Anal., 53, 4096-4117 (2020) · Zbl 1469.31008 · doi:10.1137/20M1387754
[18] Baratchart, L.; Hardin, D. P.; Lima, E. A.; Saff, E. B.; Weiss, B. P., Characterizing kernels of operators related to thin-plate magnetizations via generalizations of Hodge decompositions, Inverse Problems, 29 (2013) · Zbl 1334.78017 · doi:10.1088/0266-5611/29/1/015004
[19] Gerhards, C., On the unique reconstruction of induced spherical magnetizations, Inverse Problems, 32 (2016) · Zbl 1332.35392 · doi:10.1088/0266-5611/32/1/015002
[20] Baratchart, L.; Gerhards, C., On the recovery of core and crustal components of geomagnetic potential fields, SIAM J. Appl. Math., 77, 1756-1780 (2017) · Zbl 1375.86012 · doi:10.1137/17m1121640
[21] Gerhards, C., On the reconstruction of inducing dipole directions and susceptibilities from knowledge of the magnetic field on a sphere, Inverse Problems Sci. Eng., 27, 37-60 (2019) · Zbl 1460.65022 · doi:10.1080/17415977.2018.1438426
[22] Maus, S.; Haak, V., Magnetic field annihilators: invisible magnetization at the magnetic equator, Geophys. J. Int., 155, 509-513 (2003) · doi:10.1046/j.1365-246x.2003.02053.x
[23] Lesur, V.; Vervelidou, F., Retrieving lithospheric magnetization distribution from magnetic field models, Geophys. J. Int., 220, 981-995 (2020) · doi:10.1093/gji/ggz471
[24] Baratchart, L.; Villalobos Guillén, C.; Hardin, D. P.; Northington, M. C.; Saff, E. B., Inverse potential problems for divergence of measures with total variation regularization, Found. Comput. Math., 20, 1273-1307 (2020) · Zbl 1460.35077 · doi:10.1007/s10208-019-09443-x
[25] Parker, R. L., A theory of ideal bodies for seamount magnetism, J. Geophys. Res., 96, 101-116 (1991) · doi:10.1029/91jb01497
[26] Leweke, S.; Michel, V.; Telschow, R.; Freeden, W.; Nashed, M. Z., On the non-uniqueness of gravitational and magnetic field data inversion (survey article), Handbook of Mathematical Geodesy—Functional Analytic and Potential Theoretic Methods (2018), Basel: Birkhäuser, Basel · Zbl 1407.86019
[27] Fabian, K.; de Groot, L. V., A uniqueness theorem for tomography-assisted potential-field inversion, Geophys. J. Int., 216, 760-766 (2019) · doi:10.1093/gji/ggy455
[28] Adams, R.; Fournier, J., Sobolev Spaces (2003), New York: Academic, New York · Zbl 1098.46001
[29] McLean, W., Strongly Elliptic Systems and Boundary Integral Equations (2000), Cambridge: Cambridge University Press, Cambridge · Zbl 0948.35001
[30] Simader, C.; Sohr, H., The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains, p 294 (1996), Essex, England: Longman, Essex, England · Zbl 0868.35001
[31] Wermer, J., Potential Theory (1974), Berlin: Springer, Berlin · Zbl 0297.31001
[32] Verchota, G., Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains, J. Funct. Anal., 59, 572-611 (1984) · Zbl 0589.31005 · doi:10.1016/0022-1236(84)90066-1
[33] DiBenedetto, E., Partial Differential Equations (1995), Basel: Birkhäuser, Basel · Zbl 0818.35001
[34] Fabes, E.; Mendez, O.; Mitrea, M., Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains, J. Funct. Anal., 159, 323-368 (1998) · Zbl 0930.35045 · doi:10.1006/jfan.1998.3316
[35] Mitrea, D., The method of layer potentials for non-smooth domains with arbitrary topology, Integr. Equ. Operat. Theor., 29, 320-338 (1997) · Zbl 0915.35032 · doi:10.1007/bf01320705
[36] Hofmann, S.; Marmolejo-Olea, E.; Mitrea, M.; Pérez-Esteva, S.; Taylor, M., Hardy spaces, singular integrals and the geometry of Euclidean domains of locally finite perimeter, Geom. Funct. Anal., 19, 842-882 (2009) · Zbl 1333.42020 · doi:10.1007/s00039-009-0015-5
[37] Schwarz, G., Hodge Decomposition—A Method for Solving Boundary Value Problems (2006), Berlin: Springer, Berlin
[38] Simader, C. G.; Sohr, H.; Galdi, G. P., A new approach to the Helmholtz decomposition and the Neumann problem in L^q-spaces for bounded and exterior domains, Mathematical Problems Relating to the Navier-Stokes Equations, 1-35 (1992), Singapore: World Scientific, Singapore · Zbl 0791.35096
[39] Baratchart, L.; Leblond, J.; Nemaire, M., Silent sources and equivalent L^p-magnetizations (2021)
[40] Elcrat, A.; Isakov, V.; Kropf, E.; Stewart, D., A stability analysis of the harmonic continuation, Inverse Problems, 28 (2012) · Zbl 1247.35200 · doi:10.1088/0266-5611/28/7/075016
[41] Nagy, D.; Papp, G.; Benedek, J., The gravitational potential and its derivatives for the prism, J. Geod., 74, 552-560 (2000) · Zbl 1037.86508 · doi:10.1007/s001900000116
[42] Rump, S. M., Inversion of extremely Ill-conditioned matrices in floating-point, Japan J. Indust. Appl. Math., 26, 249-277 (2009) · Zbl 1185.65050 · doi:10.1007/bf03186534
[43] Li, Y.; Tschirhart, V.; Thomas, M., From susceptibility to magnetization: advances in the 3D inversion of magnetic data in the presence of significant remanent magnetization, 239-260 (2017)
[44] Bertete-Aguirre, H.; Cherkaev, E.; Oristaglio, M., Non-smooth gravity problem with total variation penalization functional, Geophys. J. Int., 149, 499-507 (2002) · doi:10.1046/j.1365-246x.2002.01664.x
[45] Utsugi, M., 3D inversion of magnetic data based on the L1-L2 norm regularization, Earth Planets Space, 71, 73 (2019) · doi:10.1186/s40623-019-1052-4
[46] Vatankhah, S.; Renaut, R. A.; Ardestani, V. E., 3D projected L1 inversion of gravity data using truncated unbiased predictive risk estimator for regularization parameter estimation, Geophys. J. Int., 210, 1872-1887 (2017) · doi:10.1093/gji/ggx274
[47] Benning, M.; Burger, M., Modern regularization methods for inverse problems, Acta Numer., 27, 1-111 (2018) · Zbl 1431.65080 · doi:10.1017/s0962492918000016
[48] Ito, K.; Jin, B., Inverse Problems—Tihkonov Theory and Algorithms (2015), Singapore: World Scientific, Singapore · Zbl 1306.65210
[49] Lu, W.; Leung, S.; Qian, J., An improved fast local level set method for three-dimensional inverse gravimetry, Inverse Problems Imaging, 9, 479-509 (2015) · Zbl 1369.65134 · doi:10.3934/ipi.2015.9.479
[50] Li, W.; Lu, W.; Qian, J.; Li, Y., A multiple level-set method for 3D inversion of magnetic data, Geophysics, 82, J61-J81 (2017) · doi:10.1190/geo2016-0530.1
[51] Canelas, A.; Laurain, A.; Novotny, A. A., A new reconstruction method for the inverse source problem from partial boundary measurements, Inverse Problems, 31 (2015) · Zbl 1319.35296 · doi:10.1088/0266-5611/31/7/075009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.