×

Computational modeling of fiber flow during casting of fresh concrete. (English) Zbl 1469.74124

Summary: The Folgar-Tucker fiber orientation model coupled with weakly compressible Smoothed Particle Hydrodynamics is used to simulate the process of casting of fiber reinforced concrete and to predict the spatial-temporal evolution of the probability density function of fiber orientation. The flowable concrete-fiber mix is modeled as a viscous Bingham-type fluid. Model predictions qualitatively agree with fiber orientations observed in an L-box test with fibers suspended in transparent gel. Important factors and assumptions regarding the fiber flow are reviewed and conclusions are drawn based on numerical experiments.

MSC:

74S99 Numerical and other methods in solid mechanics
74E30 Composite and mixture properties
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76M28 Particle methods and lattice-gas methods
76A05 Non-Newtonian fluids
Full Text: DOI

References:

[1] Advani SG, Tucker CL III (1987) The use of tensors to describe and predict fiber orientation in short fiber composites. J Rheol 31(8):751-784 · doi:10.1122/1.549945
[2] Advani SG, Tucker CL III (1990) Closure approximations for three-dimensional structure tensors. J Rheol 34(3):367-386 · doi:10.1122/1.550133
[3] Agboola BO, Jack DA, Montgomery-Smith S (2012) Effectiveness of recent fiber-interaction diffusion models for orientation and the part stiffness predictions in injection molded short-fiber reinforced composites. Compos Part A: Appl Sci Manuf 43(11):1959-1970 · doi:10.1016/j.compositesa.2012.06.015
[4] Altan MC, Subbiah S, Güçeri SI, Pipes RB (1990) Numerical prediction of three-dimensional fiber orientation in Hele-Shaw flows. Polym Eng Sci 30(14):848-859 · doi:10.1002/pen.760301408
[5] Bay RS, Tucker CL (1992) Fiber orientation in simple injection moldings. Part I: theory and numerical methods. Polym Compos 13(4):317-331 · doi:10.1002/pc.750130409
[6] Bay RS, Tucker CL (1992) Stereological measurement and error estimates for three-dimensional fiber orientation. Polym Eng Sci 32(4):240-253 · doi:10.1002/pen.760320404
[7] Boulekbache B, Hamrat M, Chemrouk M, Amziane S (2010) Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material. Constr Build Mater 24(9):1664-1671 · doi:10.1016/j.conbuildmat.2010.02.025
[8] Bounoua S, Lemaire E, Férec J, Ausias G, Zubarev A, Kuzhir P (2016) Apparent yield stress in rigid fibre suspensions: the role of attractive colloidal interactions. J Fluid Mech 802:611-633 · Zbl 1462.76193 · doi:10.1017/jfm.2016.475
[9] Brannon RM (2003) Functional and structured tensor analysis for engineers. New Mexico
[10] Breitenbücher R, Meschke G, Song F, Zhan Y (2014) Experimental, analytical and numerical analysis of the pullout behaviour of steel fibres considering different fibre types, inclinations and concrete strengths. Struct Concr 15(2):126-135 · doi:10.1002/suco.201300058
[11] Carmona S, Molins C, Aguado A, Mora F (2016) Distribution of fibers in SFRC segments for tunnel linings. Tunn Undergr Space Technol 51:238-249 · doi:10.1016/j.tust.2015.10.040
[12] Chung DH, Kwon TH (2001) Improved model of orthotropic closure approximation for flow induced fiber orientation. Polym Compos 22(5):636-649 · doi:10.1002/pc.10566
[13] Cintra J, Joaquim S, Tucker CL III (1995) Orthotropic closure approximations for flow-induced fiber orientation. J Rheol 39(6):1095-1122 · doi:10.1122/1.550630
[14] Crespo A (2008) Development of the smoothed particle hydrodynamics model sphysics. Ph.D. thesis, Departamento de Física Aplicada. Universidad de Vigo
[15] Crespo AJ, Domínguez JM, Rogers BD, Gómez-Gesteira M, Longshaw S, Canelas R, Vacondio R, Barreiro A, García-Feal O (2015) DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Comput Phys Commun 187:204-216 · Zbl 1348.76005 · doi:10.1016/j.cpc.2014.10.004
[16] Deeb R, Kulasegaram S, Karihaloo BL (2014) 3D modelling of the flow of self-compacting concrete with or without steel fibres. Part I: slump flow test. Comput Part Mech 1(4):373-389 · doi:10.1007/s40571-014-0002-y
[17] Deeb R, Kulasegaram S, Karihaloo BL (2014) 3D modelling of the flow of self-compacting concrete with or without steel fibres. Part II: L-box test and the assessment of fibre reorientation during the flow. Comput Part Mech 1(4):391-408 · doi:10.1007/s40571-014-0003-x
[18] Domínguez JM, Crespo AJ, Gómez-Gesteira M, Marongiu JC (2011) Neighbour lists in smoothed particle hydrodynamics. Int J Numer Methods Fluids 67(12):2026-2042 · Zbl 1426.76595 · doi:10.1002/fld.2481
[19] Fan X, Phan-Thien N, Zheng R (1998) A direct simulation of fibre suspensions. J Non-Newton Fluid Mech 74(1):113-135 · Zbl 0956.76091 · doi:10.1016/S0377-0257(97)00050-5
[20] Ferrara L, Cremonesi M, Faifer M, Toscani S, Sorelli L, Baril MA, Rthor J, Baby F, Toutlemonde F, Bernardi S (2017) Structural elements made with highly flowable UHPFRC: correlating computational fluid dynamics (CFD) predictions and non-destructive survey of fiber dispersion with failure modes. Eng Struct 133:141-296 · doi:10.1016/j.engstruct.2016.12.026
[21] Ferrara L, Ozyurt N, Di Prisco M (2011) High mechanical performance of fibre reinforced cementitious composites: the role of casting-flow induced fibre orientation. Mater Struct 44(1):109-128 · doi:10.1617/s11527-010-9613-9
[22] Ferrara L, Shyshko S, Mechtcherine V (2012) Predicting the flow-induced dispersion and orientation of steel fibers in self-consolidating concrete by distinct element method. In: Fibre Reinforced Concrete: challenges and opportunities, Proceedings BEFIB 2012, 8th International RILEM Symposium, pp 1-12
[23] Folgar F, Tucker CL III (1984) Orientation behavior of fibers in concentrated suspensions. J Reinf Plast Compos 3(2):98-119 · doi:10.1177/073168448400300201
[24] Ghanbari A, Karihaloo BL (2009) Prediction of the plastic viscosity of self-compacting steel fibre reinforced concrete. Cem Concr Res 39(12):1209-1216 · doi:10.1016/j.cemconres.2009.08.018
[25] Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-sphericalstars. Mon Not R Astron Soc 181(3):375-389 · Zbl 0421.76032 · doi:10.1093/mnras/181.3.375
[26] Gomez-Gesteira M, Rogers BD, Crespo AJ, Dalrymple RA, Narayanaswamy M, Domínguez JM (2012) SPHysics-development of a free-surface fluid solver—part 1: theory and formulations. Comput Geosci 48:289-299 · doi:10.1016/j.cageo.2012.02.029
[27] Grünewald S (2004) Performance-based design of self-compacting fibre reinforced concrete. Ph.D. thesis, Delft University of Technology, Department of Structural and Building Engineering
[28] Harris J, Pittman J (1975) Equivalent ellipsoidal axis ratios of slender rod-like particles. J Colloid Interface Sci 50(2):280-282 · doi:10.1016/0021-9797(75)90231-3
[29] Hérault A, Bilotta G, Vicari A, Rustico E, Del Negro C (2011) Numerical simulation of lava flow using a GPU SPH model. Annals of Geophysics 54(5):600-620
[30] Jeffery GB (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc Lond A: Math Phys Eng Sci 102(715):161-179 · JFM 49.0748.02 · doi:10.1098/rspa.1922.0078
[31] Joung C, Phan-Thien N, Fan X (2001) Direct simulation of flexible fibers. J Non-Newton Fluid Mech 99(1):1-36 · Zbl 1066.76527 · doi:10.1016/S0377-0257(01)00113-6
[32] Junk M, Illner R (2007) A new derivation of Jefferys equation. J Math Fluid Mech 9(4):455-488 · Zbl 1133.76014 · doi:10.1007/s00021-005-0208-0
[33] Kang ST, Kim JK (2012) Numerical simulation of the variation of fiber orientation distribution during flow molding of ultra high performance cementitious composites (uhpcc). Cem Concr Compos 34(2):208-217 · doi:10.1016/j.cemconcomp.2011.09.015
[34] Kindlmann G (2004) Superquadric tensor glyphs. In: Proceedings of the sixth joint Eurographics—IEEE TCVG conference on visualization. Eurographics Association, pp 147-154
[35] Kolařík F, Patzák B, Thrane L (2015) Modeling of fiber orientation in viscous fluid flow with application to self-compacting concrete. Comput Struct 154:91-100 · doi:10.1016/j.compstruc.2015.03.007
[36] Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013-1024 · doi:10.1086/112164
[37] Monaghan J (2012) Smoothed particle hydrodynamics and its diverse applications. Ann Rev Fluid Mech 44:323-346 · Zbl 1361.76019 · doi:10.1146/annurev-fluid-120710-101220
[38] Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophys 30(1):543-574 · doi:10.1146/annurev.aa.30.090192.002551
[39] Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Progr Phys 68(8):1703 · Zbl 1160.76399 · doi:10.1088/0034-4885/68/8/R01
[40] Montgomery-Smith S, Jack D, Smith DE (2011) The fast exact closure for Jefferys equation with diffusion. J Non-Newton Fluid Mech 166(7):343-353 · Zbl 1282.76184 · doi:10.1016/j.jnnfm.2010.12.010
[41] Montgomery-Smith S, Jack DA, Smith DE (2010) A systematic approach to obtaining numerical solutions of Jefferys type equations using spherical harmonics. Compos Part A: Appl Sci Manuf 41(7):827-835 · doi:10.1016/j.compositesa.2010.02.010
[42] Morris JP, Fox PJ, Zhu Y (1997) Modeling low Reynolds number incompressible flows using SPH. J Comput Phys 136(1):214-226 · Zbl 0889.76066 · doi:10.1006/jcph.1997.5776
[43] Papanastasiou TC (1987) Flows of materials with yield. J Rheol 31(5):385-404 · Zbl 0666.76022 · doi:10.1122/1.549926
[44] Petrie CJ (1999) The rheology of fibre suspensions. J Non-Newton Fluid Mech 87(2):369-402 · Zbl 0948.76079 · doi:10.1016/S0377-0257(99)00069-5
[45] Phan-Thien N, Fan XJ, Tanner R, Zheng R (2002) Folgar-Tucker constant for a fibre suspension in a Newtonian fluid. J Non-Newton Fluid Mech 103(2):251-260 · Zbl 1058.76617 · doi:10.1016/S0377-0257(02)00006-X
[46] Phelps JH, Tucker CL (2009) An anisotropic rotary diffusion model for fiber orientation in short-andlong-fiber thermoplastics. J Non-Newton Fluid Mech 156(3):165-176 · Zbl 1274.76351 · doi:10.1016/j.jnnfm.2008.08.002
[47] Price DJ (2011) Smoothed particle hydrodynamics: things I wish my mother taught me. arXiv preprint arXiv:1111.1259
[48] Sepehr M, Ausias G, Carreau PJ (2004) Rheological properties of short fiber filled polypropylene in transient shear flow. J Non-Newton Fluid Mech 123(1):19-32 · Zbl 1125.76314 · doi:10.1016/j.jnnfm.2004.06.005
[49] Sepehr M, Carreau PJ, Moan M, Ausias G (2004) Rheological properties of short fiber model suspensions. J Rheol 48(5):1023-1048 · Zbl 1125.76314 · doi:10.1122/1.1773783
[50] Shao S, Lo EY (2003) Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv Water Resour 26(7):787-800 · doi:10.1016/S0309-1708(03)00030-7
[51] Skoptsov KA, Sheshenin SV, Galatenko VV, Malakho AP, Shornikova ON, Avdeev VV, Sadovnichy VA (2016) Particle simulation for predicting effective properties of short fiber reinforced composites. Int J Appl Mech 8(02):1650016 · doi:10.1142/S1758825116500162
[52] Stähli P, Custer R, van Mier JG (2008) On flow properties, fibre distribution, fibre orientation and flexural behaviour of FRC. Mater Struc 41(1):189-196 · doi:10.1617/s11527-007-9229-x
[53] Vandewalle L, Heirman G, Van Rickstal F (2008) Fibre orientation in self-compacting fibre reinforced concrete. In: Proceedings of the 7th international RILEM symposium on fibre reinforced concrete: design and applications (BEFIB2008), pp 719-728
[54] Verleye V, Couniot A, Dupret F (1993) Prediction of fiber orientation in complex injection molded parts. In: ICCM/9, vol. 3, pp. 642-650
[55] Violeau D, Leroy A (2014) On the maximum time step in weakly compressible SPH. J Comput Phys 256:388-415 · Zbl 1349.76745 · doi:10.1016/j.jcp.2013.09.001
[56] Violeau D, Rogers BD (2016) Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future. J Hydraul Res 54(1):1-26 · doi:10.1080/00221686.2015.1119209
[57] Švec O, Skocek J, Olesen JF, Stang H (2012) Fibre reinforced self-compacting concrete flow simulations in comparison with L-box experiments using carbopol. In: 8th Rilem international symposium on fibre reinforced concrete
[58] Švec O, Skoček J, Stang H, Geiker MR, Roussel N (2012) Free surface flow of a suspension of rigid particles in a non-newtonian fluid: a lattice boltzmann approach. J Non-Newton Fluid Mech 179:32-42
[59] Wang J, OGara JF, Tucker CL III (2008) An objective model for slow orientation kinetics in concentratedfiber suspensions: theory and rheological evidence. J Rheol 52(5):1179-1200 · doi:10.1122/1.2946437
[60] Yamane Y, Kaneda Y, Dio M (1994) Numerical simulation of semi-dilute suspensions of rodlike particlesin shear flow. J Non-Newton Fluid Mech 54:405-421 · doi:10.1016/0377-0257(94)80033-2
[61] Zak G, Park C, Benhabib B (2001) Estimation of three-dimensional fibre-orientation distribution in short-fibre composites by a two-section method. J Compos Mater 35(4):316-339 · doi:10.1177/002199801772662190
[62] Zhan Y, Meschke G (2016) Multilevel computational model for failure analysis of steel-fiber-reinforced concrete structures. J Eng Mech 142(11):04016090 · doi:10.1061/(ASCE)EM.1943-7889.0001154
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.