×

Generalized fourth-order Hill’s 1979 yield function for modeling sheet metals in plane stress. (English) Zbl 1469.74024

Summary: It is shown that the fourth-order homogeneous polynomial yield function first considered by M. Gotoh [Int. J. Mech. Sci. 19, 505–512 (1977; Zbl 0373.73038)] for sheet metals can be recast into a particular general form in intrinsic variables. It leads to a method of generating many specific representations of a fourth-order R. Hill’s 1979 yield function [Math. Proc. Camb. Philos. Soc. 85, 179–191 (1979; Zbl 0388.73029)] generalized for off-axis loading. One may use the generalized fourth-order Hill’s yield function for modeling sheet metals of various degrees of planar anisotropy with ease. Furthermore, a sufficient condition on the positivity and convexity of a calibrated Hill’s yield function can also be verified straightforwardly. For six sheet metals whose nine material constants in a Gotoh’s yield function have been reported in the literature, their generalized Hill’s 1979 yield functions are obtained subsequently. The proposed sufficient condition on the positivity and convexity of Hill’s yield function is found to be satisfied by five of these six sheet metals. An approximate Hill’s 1979 yield function for the sixth sheet metal has also been identified, so the proposed sufficient condition on its positivity and convexity is also met. Generalizing fourth-order Hill’s 1979 yield functions may thus be used as an alternative approach for formulating a class of positive and convex yield functions with up to nine material constants for various orthotropic sheet metals.

MSC:

74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74A20 Theory of constitutive functions in solid mechanics
Full Text: DOI

References:

[1] Barlat, F., Lege, D.J., Brem, J.C.: A six-component yield function for anisotropic materials. Int. J. Plast. 7(5), 693-712 (1991) · doi:10.1016/0749-6419(91)90052-Z
[2] Barlat, F., Yoon, J.W., Cazacu, O.: On linear transformations of stress tensors for the description of plastic anisotropy. Int. J. Plast. 23(3), 876-896 (2007) · Zbl 1359.74014 · doi:10.1016/j.ijplas.2006.10.001
[3] Gotoh, M.: A theory of plastic anisotropy based on a yield function of fourth order (plane stress state)-I. Int. J. Mech. Sci. 19, 505-512 (1977) · Zbl 0373.73038 · doi:10.1016/0020-7403(77)90043-1
[4] Gotoh, M.: A theory of plastic anisotropy based on a yield function of fourth order (plane stress state)-II. Int. J. Mech. Sci. 19, 513-520 (1977) · Zbl 0373.73039 · doi:10.1016/0020-7403(77)90044-3
[5] Gotoh, M., Iwata, N., Matsui, M.: Finite-element simulation of deformation and breakage in sheet metal forming. JSME Int. J. Ser. A 38, 281-288 (1995)
[6] Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. A 193, 281-297 (1948) · Zbl 0032.08805 · doi:10.1098/rspa.1948.0045
[7] Hill, R.: The Mathematical Theory of Plasticity. Clarendon Press, Oxford (1950) · Zbl 0041.10802
[8] Hill, R.: Theoretical plasticity of textured aggregates. Math. Proc. Camb. Philos. Soc 85, 179-191 (1979) · Zbl 0388.73029 · doi:10.1017/S0305004100055596
[9] Hill, R.: Basic stress analysis of hyperbolic regimes in plastic media. Math. Proc. Camb. Philos. Soc 88, 359-369 (1980) · Zbl 0453.73041 · doi:10.1017/S0305004100057662
[10] Hill, R.: Constitutive modeling of orthotropic plasticity in sheet metals. J. Mech. Phys. Solids 38, 403-417 (1990) · Zbl 0713.73044 · doi:10.1016/0022-5096(90)90006-P
[11] Hosford, W.F.: Comments on anisotropic yield criteria. Int. J. Mech. Sci. 27, 423-427 (1985) · doi:10.1016/0020-7403(85)90032-3
[12] Hu, W.: Characterised behaviours and corresponding yield criterion of anisotropic sheet metals. Mater. Sci. Eng. A 331, 33-40 (2003)
[13] Karafillis, A.P., Boyce, M.C.: A general anisotropic yield criterion using bounds and a transformation weighting tensor. J. Mech. Phys. Solids 41(12), 1859-1886 (1993) · Zbl 0792.73029 · doi:10.1016/0022-5096(93)90073-O
[14] Leacock, A.G.: A mathematical description of orthotropy in sheet metals. J. Mech. Phys. Solids 54, 425-444 (2006) · Zbl 1120.74385 · doi:10.1016/j.jmps.2005.08.008
[15] Lin, S.B., Ding, J.L.: A modifed form of Hill’s orientation-depedent yield criterion for orthotropic sheet metals. J. Mech. Phys. Solids 44, 1739-1764 (1996) · doi:10.1016/0022-5096(96)00057-9
[16] Soare, S., Barlat, F.: Convex polynomial yield functions. J. Mech. Phys. Solids 58, 1804-1818 (2010) · Zbl 1225.74017 · doi:10.1016/j.jmps.2010.08.005
[17] Soare, S., Yoon, J.W., Cazacu, O.: On the use of homogeneous polynomials to develop anisotropic yield functions with applications to sheet forming. Int. J. Plast. 24(6), 915-944 (2008) · Zbl 1394.74024 · doi:10.1016/j.ijplas.2007.07.016
[18] Tong, W.: A plane stress anisotropic plastic flow theory for orthotropic sheet metals. Int. J. Plast. 22, 497-535 (2006) · Zbl 1138.74302 · doi:10.1016/j.ijplas.2005.04.005
[19] Yoshida, F., Hamasaki, H., Uemori, T.: A user-friedly 3D yield function to describe anisotropy of steel sheets. Int. J. Plast. 45, 119-139 (2013) · doi:10.1016/j.ijplas.2013.01.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.