×

Streaming Hermite interpolation using cubic splinelets. (English) Zbl 1469.65040

Summary: \( C^2\)-continuous Hermite interpolation of streaming data with the use of cubic splinelets – building blocks for \(C^2\)-continuous cubic splines – is presented. Two specific types of splinelets, denoted as \(A\) and \(B\), are formally defined (in closed form for equidistant internal knots) and then comparatively evaluated in a series of numerical experiments. The presented results show that the interpolant based on the cubic spline of type B outperforms not only its quintic correspondent, but also the \((C^1\)-continuous only!) cubic Hermite spline. The proposed approach can be directly applied to streams that do or do not contain data related to the second derivative of the interpolated function, and to multidimensional curves/trajectories defined parametrically. One other possible application would be processing data sets that are too large to fit in memory.

MSC:

65D07 Numerical computation using splines
Full Text: DOI

References:

[1] Angeles, J., Fundamentals of Robotic Mechanical Systems (2002), Springer
[2] Bastl, B.; Bizzarri, M.; Krajnc, M.; Lávička, M.; Slabá, K.; Šír, Z.; Vitrih, V.; Žagar, E., C1 Hermite interpolation with spatial Pythagorean-hodograph cubic biarcs, J. Comput. Appl. Math., 257, 65-78 (2014) · Zbl 1294.65015
[3] Bazaz, S. A.; Tondu, B., Minimum time on-line joint trajectory generator based on low order spline method for industrial manipulators, Robot. Auton. Syst., 29, 4, 257-268 (1999)
[4] Bézier, P., Définition numerique de courbes et surfaces I, automátisme (1966)
[5] Biagiotti, L.; Melchiorri, C., Trajectory Planning for Automatic Machines and Robots (2008), Springer Science & Business Media
[6] Birkhoff, G. D., General mean value and remainder theorems with applications to mechanical differentiation and quadrature, Trans. Am. Math. Soc., 7, 1, 107-136 (1906) · JFM 37.0308.02
[7] Catmull, E.; Rom, R., A class of local interpolating splines, (Computer Aided Geometric Design (1974), Elsevier), 317-326
[8] De Boor, C., A Practical Guide to Splines, vol. 27 (1978), Springer-Verlag: Springer-Verlag New York · Zbl 0406.41003
[9] de Carvalho, J. M.; Hanson, J. V., Real-time interpolation with cubic splines and polyphase networks, Can. Electr. Eng. J., 11, 2, 64-72 (1986)
[10] De Casteljau, P., Courbes et surfaces à pôles (1963), André Citroën, Automobiles SA: André Citroën, Automobiles SA Paris
[11] Dębski, R., An adaptive multi-spline refinement algorithm in simulation based sailboat trajectory optimization using onboard multi-core computer systems, Int. J. Appl. Math. Comput. Sci., 26, 2, 351-365 (2016) · Zbl 1347.93151
[12] Du Monceau, H.-L. D., Elémens de l’architecture navale ou traité pratique de la construction des vaisseaux (1752), CA Jombert
[13] Fan, W.; Lee, C.-H.; Chen, J.-H., A realtime curvature-smooth interpolation scheme and motion planning for cnc machining of short line segments, Int. J. Mach. Tools Manuf., 96, 27-46 (2015)
[14] Farin, G.; Hoschek, J.; Kim, M.-S., Handbook of Computer Aided Geometric Design (2002), Elsevier · Zbl 1003.68179
[15] Forrest, A. R., Curves and surfaces for computer-aided design (1968), University of Cambridge, Ph.D. thesis
[16] Forrest, A. R., Interactive interpolation and approximation by Bézier polynomials, Comput. J., 15, 1, 71-79 (1972) · Zbl 0243.68015
[17] Guven, O.; Eftekhar, A.; Kindt, W.; Constandinou, T. G., Computationally efficient real-time interpolation algorithm for non-uniform sampled biosignals, Healthc. Technol. Lett., 3, 2, 105-110 (2016)
[18] Hermite, M. C.; Borchardt, M., Sur la formule d’interpolation de lagrange, J. Reine Angewandte Mathematik (Crelles Journal), 1878, 84, 70-79 (1878) · JFM 09.0312.02
[19] Jüttler, B., Hermite interpolation by Pythagorean hodograph curves of degree seven, Math. Comput., 70, 235, 1089-1111 (2001) · Zbl 0963.68210
[20] Knott, G. D., Interpolating Cubic Splines, vol. 18 (2012), Springer Science & Business Media · Zbl 1057.41001
[21] Kröger, T., On-Line Trajectory Generation in Robotic Systems: Basic Concepts for Instantaneous Reactions to Unforeseen (Sensor) Events, vol. 58 (2010), Springer · Zbl 1235.93162
[22] Lai, M.-J.; Schumaker, L. L., Spline Functions on Triangulations, Encyclopedia of Mathematics and Its Applications (2007), Cambridge University Press · Zbl 1185.41001
[23] Li, J., A class of quintic Hermite interpolation curve and the free parameters selection, J. Adv. Mech. Des. Syst. Manuf., 13, 1 (2019), JAMDSM0011
[24] Lu, L., Planar quintic G2 Hermite interpolation with minimum strain energy, J. Comput. Appl. Math., 274, 109-117 (2015) · Zbl 1296.65017
[25] Lu, L.; Jiang, C.; Hu, Q., Planar cubic G1 and quintic G2 Hermite interpolations via curvature variation minimization, Comput. Graph., 70, 92-98 (2018)
[26] Meijering, E., A chronology of interpolation: from ancient astronomy to modern signal and image processing, Proc. IEEE, 90, 3, 319-342 (2002)
[27] Milenkovic, V.; Milenkovic, P. H., Tongue model for characterizing vocal tract kinematics, (Recent Advances in Robot Kinematics (1996), Springer), 217-224
[28] Ogniewski, J., Cubic spline interpolation in real-time applications using three control points, (27th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision WSCG 2019. 27th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision WSCG 2019, Plzen, Czech Republic, May 27-30, 2019, vol. 2901 (2019), World Society for Computer Graphics), 1-10
[29] Schoenberg, I., Contributions to the problem of approximation of equidistant data by analytic functions, Q. Appl. Math., 4, 1, 45-99 (1946) · Zbl 0061.28804
[30] Schoenberg, I. J., Cardinal Spline Interpolation, vol. 12 (1973), Siam · Zbl 0264.41003
[31] Schumaker, L., Spline Functions: Basic Theory (2007), Cambridge University Press · Zbl 1123.41008
[32] Sestini, A.; Ferjančič, K.; Manni, C.; Sampoli, M. L., A fully data-dependent criterion for free angles selection in spatial ph cubic biarc Hermite interpolation, Comput. Aided Geom. Des., 31, 7-8, 398-411 (2014) · Zbl 1364.65045
[33] Späth, H., One Dimensional Spline Interpolation Algorithms (1995), Taylor & Francis, AK Peters Series · Zbl 0832.65004
[34] Wallis, J., Arithmetica Infinitorum, Operum Mathematicorum, vol. 2, 1-199 (1656)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.