×

Gaussian graphical models with toric vanishing ideals. (English) Zbl 1469.62420

Summary: Gaussian graphical models are semi-algebraic subsets of the cone of positive definite covariance matrices. They are widely used throughout natural sciences, computational biology and many other fields. Computing the vanishing ideal of the model gives us an implicit description of the model. In this paper, we resolve two conjectures given by Sturmfels and Uhler. In particular, we characterize those graphs for which the vanishing ideal of the Gaussian graphical model is generated in degree 1 and 2. These turn out to be the Gaussian graphical models whose ideals are toric ideals, and the resulting graphs are the 1-clique sums of complete graphs.

MSC:

62R01 Algebraic statistics
62H22 Probabilistic graphical models
05C90 Applications of graph theory

Software:

Macaulay2; TETRAD

References:

[1] DeLoera, JA; Sturmfels, B.; Thomas, RR, Gröbner bases and triangulations of the second hypersimplex, Combinatorica, 15, 3, 409-424 (1995) · Zbl 0838.52015 · doi:10.1007/BF01299745
[2] Dobra, A.; Sullivant, S., A divide-and-conquer algorithm for generating Markov bases of multi-way tables, Computational Statistics, 19, 3, 347-366 (2004) · Zbl 1063.62085 · doi:10.1007/BF03372101
[3] Drton, M.; Massam, H.; Olkin, I., Moments of minors of Wishart matrices, The Annals of Statistics, 36, 5, 2261-2283 (2008) · Zbl 1152.62343 · doi:10.1214/07-AOS522
[4] Drton, M.; Sturmfels, B.; Sullivant, S., Algebraic factor analysis: Tetrads, pentads and beyond, Probability Theory and Related Fields, 138, 3-4, 463-493 (2007) · Zbl 1111.13020 · doi:10.1007/s00440-006-0033-2
[5] Grayson, D. R., Stillman, M. E. (2017). Macaulay2, a software system for research in algebraic geometry. https://faculty.math.illinois.edu/Macaulay2/. Retrieved Sept 1, 2017
[6] Hassett, B., Introduction to algebraic geometry (2007), Cambridge: Cambridge University Press, Cambridge · Zbl 1118.14002 · doi:10.1017/CBO9780511755224
[7] Herzog, J.; Hibi, T.; Ohsugi, H., Binomial ideals. Graduate texts in mathematics (2018), Cham: Springer, Cham · Zbl 1403.13004 · doi:10.1007/978-3-319-95349-6
[8] Hoşten, S.; Sullivant, S., Gröbner bases and polyhedral geometry of reducible and cyclic models, Journal of Combinatorial Theory Series A, 100, 2, 277-301 (2002) · Zbl 1044.62065 · doi:10.1006/jcta.2002.3301
[9] Jones, B.; West, M., Covariance decomposition in undirected Gaussian graphical models, Biometrika, 92, 4, 779-786 (2005) · Zbl 1160.62328 · doi:10.1093/biomet/92.4.779
[10] Kelley, T., Essential traits of mental life. Harvard studies in education (1935), Cambridge, MA: Harvard University Press, Cambridge, MA
[11] Koller, D.; Friedman, N., Probabilistic graphical models. Adaptive computation and machine learning (2009), Cambridge, MA: MIT Press, Cambridge, MA · Zbl 1183.68483
[12] Lauritzen, SL, Graphical models. Oxford statistical science series (1996), New York: Oxford University Press, New York · Zbl 0907.62001
[13] Spirtes, P.; Glymour, C.; Scheines, R., Causation, prediction, and search. Adaptive computation and machine learning (2000), Cambridge, MA: MIT Press, Cambridge, MA · Zbl 0806.62001
[14] Sturmfels, B., Gröbner bases and convex polytopes. University Lecture Series (1996), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0856.13020
[15] Sturmfels, B.; Uhler, C., Multivariate Gaussian, semidefinite matrix completion, and convex algebraic geometry, Annals of the Institute of Statistical Mathematics, 62, 4, 603-638 (2010) · Zbl 1440.62255 · doi:10.1007/s10463-010-0295-4
[16] Sullivant, S., Toric fiber products, Journal of Algebra, 316, 2, 560-577 (2007) · Zbl 1129.13030 · doi:10.1016/j.jalgebra.2006.10.004
[17] Sullivant, S., Algebraic geometry of Gaussian Bayesian networks, Advances in Applied Mathematics, 40, 4, 482-513 (2008) · Zbl 1175.13014 · doi:10.1016/j.aam.2007.04.004
[18] Sullivant, S., Algebraic statistics. Graduate Studies in Mathematics (2018), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1408.62004
[19] Sullivant, S.; Talaska, K.; Draisma, J., Trek separation for Gaussian graphical models, The Annals of Statistics, 38, 3, 1665-1685 (2010) · Zbl 1189.62091 · doi:10.1214/09-AOS760
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.