×

Bayesian non-parametric simultaneous quantile regression for complete and grid data. (English) Zbl 1469.62051

Summary: Bayesian methods for non-parametric quantile regression have been considered with multiple continuous predictors ranging values in the unit interval. Two methods are proposed based on assuming that either the quantile function or the distribution function is smooth in the explanatory variables and is expanded in tensor product of B-spline basis functions. Unlike other existing methods of non-parametric quantile regressions, the proposed methods estimate the whole quantile function instead of estimating on a grid of quantiles. Priors on the coefficients of the B-spline expansion are put in such a way that the monotonicity of the estimated quantile levels are maintained unlike local polynomial quantile regression methods. The proposed methods are also modified for quantile grid data where only the percentile range of each response observations are known. A comparative simulation study of the performances of the proposed methods and some other existing methods are provided in terms of prediction mean squared errors and mean \(L_1\)-errors over the quartiles. The proposed methods are used to estimate the quantiles of US household income data and North Atlantic hurricane intensity data.

MSC:

62-08 Computational methods for problems pertaining to statistics
62G08 Nonparametric regression and quantile regression

Software:

DPpackage; quantreg

References:

[1] Bethke, A., 1980. Genetic algorithms as function optimizers. https://deepblue.lib.umich.edu/handle/2027.42/3572; Bethke, A., 1980. Genetic algorithms as function optimizers. https://deepblue.lib.umich.edu/handle/2027.42/3572
[2] Bondell, H. D.; Reich, B. J.; Wang, H., Non-crossing quantile regression curve estimation, Biometrika, 97, 825-838, (2010) · Zbl 1204.62061
[3] de Boor, C., A practical guide to splines, (2001), Springer New York · Zbl 0987.65015
[4] Carvalho, V.; Hanson, T. E.; Carvalho, M., Bayesian nonparametric ROC regression modeling, Bayesian Anal., 8, 623-646, (2013) · Zbl 1329.62154
[5] Chaudhuri, P., Global nonparametric estimation of conditional quantile functions and their derivatives, J. Multivariate Anal., 39, 2, 246-269, (1991) · Zbl 0739.62028
[6] Chaudhuri, P., Nonparametric estimates of regression quantiles and their local bahadur representation, Ann. Statist., 2, 760-777, (1991) · Zbl 0728.62042
[7] Chib, S.; Greenberg, E., Understanding the metropolis-Hastings algorithm, Amer. Statist., 49, 4, 327-335, (1995)
[8] Das, P., 2016a. Black-box optimization on multiple simplex constrained blocks, arXiv:1609.02249v1; Das, P., 2016a. Black-box optimization on multiple simplex constrained blocks, arXiv:1609.02249v1
[9] Das, P., 2016b. Derivative-free efficient global optimization of function of parameters from bounded intervals, arXiv:1604.08616v1; Das, P., 2016b. Derivative-free efficient global optimization of function of parameters from bounded intervals, arXiv:1604.08616v1
[10] Das, P., 2016c. Derivative-free efficient global optimization on high-dimensional simplex, arXiv:1604.08636v1; Das, P., 2016c. Derivative-free efficient global optimization on high-dimensional simplex, arXiv:1604.08636v1
[11] Das, P.; Ghosal, S., Analyzing ozone concentration data of US with Bayesian spatio-temporal quantile regression, Environmetrics, 28, 4, e2443, (2017)
[12] Das, P.; Ghosal, S., Bayesian quantile regression using random B-spline series prior, Comput. Statist. Data Anal., 109, 121-143, (2017) · Zbl 1466.62052
[13] Dunson, D. B.; Taylor, J. A., Approximate Bayesian inference for quantiles, J. Nonparametr. Stat., 17, 3, 385-400, (2005) · Zbl 1061.62051
[14] Elsner, J. B.; Kossin, J. P.; Jagger, T. H., The increasing intensity of the strongest tropical cyclones, Nature, 455, 92-95, (2008)
[15] Figueiredo, F.; Gomes, M. I., The skew-normal distribution in SPC, REVSTAT, 11, 1, 83-104, (2013)
[16] Geraci, M.; Bottai, M., Quantile regression for longitudinal data using the asymmetric Laplace distribution, Biostatistics, 8, 1, 140-154, (2007) · Zbl 1170.62380
[17] He, X., Quantile curves without crossing, Amer. Statist., 51, 186-192, (1997)
[18] Iorio, M. D.; Johnson, W. O.; Muller, P.; Rosner, G. L., Bayesian nonparametric non-proportional hazards survival modeling, Biometrics, 65, 3, 762-771, (2009) · Zbl 1172.62073
[19] Jara, A., Hanson, T., Quintana, F., Mueller, P., Rosner, G., 2016c. Bayesian nonparametric modeling in R in R package version 1.1-7. URL https://cran.r-project.org/web/packages/DPpackage/DPpackage.pdf; Jara, A., Hanson, T., Quintana, F., Mueller, P., Rosner, G., 2016c. Bayesian nonparametric modeling in R in R package version 1.1-7. URL https://cran.r-project.org/web/packages/DPpackage/DPpackage.pdf
[20] Kirkpatrick, S.; Gelatt, Jr. C.; Vecchi, M., Optimization by simulated annealing, Aust. J. Biol. Sci., 220, 671-680, (1983) · Zbl 1225.90162
[21] Koenker, R., Quantile regression, (2005), Cambridge University Press London · Zbl 1111.62037
[22] Koenker, R., 2015. QUANTILE regression in R: A vignette. https://cran.r-project.org/web/packages/quantreg/vignettes/rq.pdf; Koenker, R., 2015. QUANTILE regression in R: A vignette. https://cran.r-project.org/web/packages/quantreg/vignettes/rq.pdf
[23] Koenker, R.; Bassett, G., Regression quantiles, Econometrica, 46, 33-50, (1978) · Zbl 0373.62038
[24] Koenker, R., Portnoy, S., Ng, P.T., Zeileis, A., Grosjean, P., Ripley, B.D., 2016. quantreg: Quantile Regression in R package version 5.21. http://CRAN.R-project.org/package=quantreg; Koenker, R., Portnoy, S., Ng, P.T., Zeileis, A., Grosjean, P., Ripley, B.D., 2016. quantreg: Quantile Regression in R package version 5.21. http://CRAN.R-project.org/package=quantreg
[25] Kottas, A.; Krnjajic, M., Bayesian semiparametric modelling in quantile regression, Scand. J. Stat., 36, 297-319, (2009) · Zbl 1190.62053
[26] Liu, Y.; Wu, Y., Simultaneous multiple non-crossing quantile regression estimation using kernal constraints, J. Nonparametr. Stat., 23, 2, 415-437, (2011) · Zbl 1359.62108
[27] Neocleous, T.; Portnoy, S., Quantile curves without crossing, Statist. Probab. Lett., 78, 1226-1229, (2008) · Zbl 1141.62055
[28] Reich, B. J., Spatiotemporal quantile regression for detecting distributional changes in environmental processes, J. R. Stat. Soc. Ser. C. Appl. Stat., 61, 4, 535-553, (2012)
[29] Reich, B. J.; Fuentes, M.; Dunson, D. B., Bayesian spatial quantile regression, J. Am. Stat. Soc., 106, 493, 6-20, (2011) · Zbl 1396.62263
[30] Reich, B. J.; Smith, L. B., Bayesian quantile regression for censored data, Biometrics, 69, 3, 651-660, (2013) · Zbl 1418.62170
[31] Shim, J.; Hwang, C.; Seok, K. H., Non-crossing quantile regression via doubly penalized kernel machine, Comput. Statist., 24, 83-94, (2009) · Zbl 1223.62050
[32] Takeuchi, I., Non-crossing quantile regression curves by support vector and its efficient implementation, (Proceedings of 2004 IEEE IJCNN, vol. 1, (2004)), 401-406
[33] Takeuchi, I.; Le, Q. V.; Sears, T. D.; Smola, A. J., Noparametric quantile estimation, J. Mach. Learn. Res., 7, 1231-1264, (2006) · Zbl 1222.68316
[34] Tokdar, S.; Kadane, J. B., Simultaneous linear quantile regression a semiparametric Bayesian approach, Bayesian Anal., 7, 1, 51-72, (2012) · Zbl 1330.62193
[35] Vapnik, V., The nature of statistical learning theory, (1995), Springler-Verlag New York · Zbl 0833.62008
[36] Yang, Y.; Tokdar, S. T., Joint estimation of quantile planes over arbitrary predictor spaces, J. Amer. Statist. Assoc., 112, 519, 1107-1120, (2017)
[37] Yu, K.; Jones, M. C., Local linear quantile regression, J. Amer. Statist. Assoc., 93, 441, 228-237, (1998) · Zbl 0906.62038
[38] Yu, K.; Moyeed, R. A., Bayesian quantile regression, Statist. Probab. Lett., 54, 437-447, (2001) · Zbl 0983.62017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.