×

On the speed of distance-stationary sequences. (English) Zbl 1469.60314

Summary: We prove a formula for the speed of distance-stationary random sequences generalizing the law of large numbers of Karlsson and Ledrappier. A particular case is the classical formula for the largest Lyapunov exponent of i.i.d. matrix products, but our result has applications in various different contexts. In many situations it gives a method to estimate the speed, and in others it allows to obtain results of dimension drop for escape measures related to random walks. We show applications to stationary reversible random trees with conductances, Bernoulli bond percolation of Cayley graphs, and random walks on cocompact Fuchsian groups.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
05C80 Random graphs (graph-theoretic aspects)
60G50 Sums of independent random variables; random walks
37A30 Ergodic theorems, spectral theory, Markov operators
60K37 Processes in random environments
05C81 Random walks on graphs

References:

[1] Aizenman, M. and Warzel, S. The canopy graph and level statistics for random operators on trees.Math. Phys. Anal. Geom.,9(4), 291-333 (2007) (2006) · Zbl 1138.47032
[2] Aldous, D. and Lyons, R. Processes on unimodular random networks.Electron. J. Probab.,12, no. 54, 1454-1508 (2007) · Zbl 1131.60003
[3] Ballmann, W.Lectures on spaces of nonpositive curvature, volume 25 ofDMV Seminar. Birkhäuser Verlag, Basel (1995). ISBN 3-7643-5242-6 · Zbl 0834.53003
[4] Benjamini, I. and Curien, N. Ergodic theory on stationary random graphs.Electron. J. Probab.,17, no. 93, 20 (2012) · Zbl 1278.05222
[5] Benjamini, I., Lyons, R., and Schramm, O. Percolation perturbations in potential theory and random walks. InRandom walks and discrete potential theory (Cortona, 1997), Sympos. Math., XXXIX, pp. 56-84. Cambridge Univ. Press, Cambridge (1999) · Zbl 0958.05121
[6] Benjamini, I., Lyons, R., and Schramm, O. Unimodular random trees.Ergodic Theory Dynam. Systems,35(2), 359-373 (2015) · Zbl 1328.05166
[7] Benjamini, I., Paquette, E., and Pfeffer, J. Anchored expansion, speed and the Poisson-Voronoi tessellation in symmetric spaces.Ann. Probab.,46(4), 1917- 1956 (2018) · Zbl 1430.60019
[8] Blackwell, D. and Dubins, L. E. An extension of Skorohod’s almost sure representation theorem.Proc. Amer. Math. Soc.,89(4), 691-692 (1983) · Zbl 0542.60005
[9] Bonahon, F.Low-dimensional geometry. From Euclidean surfaces to hyperbolic knots, IAS/Park City Mathematical Subseries, volume 49 ofStudent Mathematical Library. American Mathematical Society, Providence, RI; Institute for Advanced Study (IAS), Princeton, NJ (2009). ISBN 978-0-8218-4816-6
[10] Bordenave, C. Lecture notes on random graphs and probabilistic combinatorial optimization (2016). Unpublished lecture notes. Available at
[11] Bougerol, P. and Lacroix, J.Products of random matrices with applications to Schrödinger operators, volume 8 ofProgress in Probability and Statistics. Birkhäuser Boston, Inc., Boston, MA (1985). ISBN 0-8176-3324-3 · Zbl 0572.60001
[12] Carrasco, M., Lessa, P., and Paquette, E. A Furstenberg type formula for the speed of distance stationary sequences (Version 2).ArXiv Mathematics e-prints(2017)
[13] Chen, D. and Peres, Y. The speed of simple random walk and anchored expansion on percolation clusters: an overview. InDiscrete random walks (Paris, 2003), Discrete Math. Theor. Comput. Sci. Proc., AC, pp. 39-44. Assoc. Discrete Math. Theor. Comput. Sci., Nancy (2003) · Zbl 1073.60526
[14] Chen, D. and Peres, Y. Anchored expansion, percolation and speed.Ann. Probab., 32(4), 2978-2995 (2004) · Zbl 1069.60093
[15] Curien, N. Planar stochastic hyperbolic triangulations.Probab. Theory Related Fields,165(3-4), 509-540 (2016) · Zbl 1342.05137
[16] Curien,N.Randomgraphs:thelocalconvergencepointofview (2017).Unpublished lecture notes. Available at
[17] Derriennic, Y. Lois “zéro ou deux” pour les processus de Markov. Applications aux marches aléatoires.Ann. Inst. H. Poincaré Sect. B (N.S.),12(2), 111-129 (1976) · Zbl 0353.60075
[18] Furstenberg, H. Noncommuting random products.Trans. Amer. Math. Soc.,108, 377-428 (1963) · Zbl 0203.19102
[19] Gantert, N., Müller, S., Popov, S., and Vachkovskaia, M. Random walks on GaltonWatson trees with random conductances.Stochastic Process. Appl.,122(4), 1652-1671 (2012) · Zbl 1255.60178
[20] Gouëzel, S. and Karlsson, A. Subadditive and multiplicative ergodic theorems.J. Eur. Math. Soc. (JEMS),22(6), 1893-1915 (2020) · Zbl 1440.37006
[21] Gurel-Gurevich, O. and Nachmias, A. Recurrence of planar graph limits.Ann. of Math. (2),177(2), 761-781 (2013) · Zbl 1262.05031
[22] Häggström, O. and Peres, Y. Monotonicity of uniqueness for percolation on Cayley graphs: all infinite clusters are born simultaneously.Probab. Theory Related Fields,113(2), 273-285 (1999) · Zbl 0921.60091
[23] Harvey, M.Geometry illuminated. An illustrated introduction to Euclidean and hyperbolic plane geometry.MAA Textbooks. Mathematical Association of America, Washington, DC (2015). ISBN 978-1-93951-211-6; 978-1-61444-618-7 · Zbl 1335.51001
[24] Hattori, T. Busemann functions and positive eigenfunctions of Laplacian on noncompact symmetric spaces.J. Math. Kyoto Univ.,40(3), 407-435 (2000) · Zbl 0979.58011
[25] Hochman, M. and Solomyak, B. On the dimension of Furstenberg measure for SL2(R)random matrix products.Invent. Math.,210(3), 815-875 (2017) · Zbl 1398.37012
[26] Karlsson, A. Linear rate of escape and convergence in direction. InRandom walks and geometry, pp. 459-471. Walter de Gruyter, Berlin (2004) · Zbl 1056.60044
[27] Karlsson, A. and Ledrappier, F. On laws of large numbers for random walks.Ann. Probab.,34(5), 1693-1706 (2006) · Zbl 1111.60005
[28] Karlsson, A. and Margulis, G. A. A multiplicative ergodic theorem and nonpositively curved spaces.Comm. Math. Phys.,208(1), 107-123 (1999) · Zbl 0979.37006
[29] Ka˘ımanovich, V. A. Lyapunov exponents, symmetric spaces and a multiplicative ergodic theorem for semisimple Lie groups.Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI),164(Differentsial’naya Geom. Gruppy Li i Mekh. IX), 29-46, 196-197 (1987)
[30] Komlós, J. A generalization of a problem of Steinhaus.Acta Math. Acad. Sci. Hungar.,18, 217-229 (1967) · Zbl 0228.60012
[31] Kosenko, P. Fundamental Inequality for Hyperbolic Coxeter and Fuchsian Groups Equipped with Geometric Distances.International Mathematics Research Notices(2020) · Zbl 1475.30103 · doi:10.1093/imrn/rnaa213
[32] Ledrappier, F. Quelques propriétés des exposants caractéristiques. InÉcole d’été de probabilités de Saint-Flour, XII—1982, volume 1097 ofLecture Notes in Math., pp. 305-396. Springer, Berlin (1984) · Zbl 0541.00006
[33] Lyons, R., Pemantle, R., and Peres, Y. Ergodic theory on Galton-Watson trees: speed of random walk and dimension of harmonic measure.Ergodic Theory Dynam. Systems,15(3), 593-619 (1995) · Zbl 0819.60077
[34] Tanaka, R. Dimension of harmonic measures in hyperbolic spaces.Ergodic Theory Dynam. Systems,39(2), 474-499 (2019). 1. Introduction2. Application to random trees2.1. Weighted Canopy trees2.2. Speed formulas2.3. Transient trees with zero speed have one end3. Application to Bernoulli percolation clusters3.1. Bernoulli percolation clusters on Cayley graphs4. Application to dimension drop of harmonic measures5. Application to cocycles of isometries5.1. Law of large numbers5.2. Lyapunov exponents of 2x2 i.i.d. matrix products6. Proof of the formula for speed6.1. Preliminaries6.2. An integral formula for speed6.3. A few simple examplesAppendix A. The sum of a horofunction and the distance function in the hyperbolic planeAcknowledgementsReferences · Zbl 1410.37022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.