×

Exact dimensionality and Ledrappier-Young formula for the Furstenberg measure. (English) Zbl 1469.28009

Let \(V\) be a finite-dimensional vector space over the reals with integral dimension \(\geq 2\). Let \(\mathrm{GL}(V)\) be the automorphism group of \(V\) and let \(\mathcal{M}(\mathrm{GL}(V))\) be the collection of Borel probability measures on \(\mathrm{GL}(V)\). For \(\mu\in\mathcal{M}(\mathrm{GL}(V)\), denote by \(S_\mu\) the smallest closed subsemigroup of \(\mathrm{GL}(V)\) such that \(\mu(S_\mu) = 1\). Further, assume that \(S_\mu\) is strongly irreducible and proximal. Under these two assumptions, there exists a unique \(\nu\in\mathcal{M}(\mathrm{GL}(V))\) which is \(\mu\)-stationary. This measure \(\nu\) is called the Furstenberg measure corresponding to \(\mu\).
The authors prove that \(\nu\) is exact dimensional and provide a Ledrappier-Young type formula for its dimension.

MSC:

28A80 Fractals
37C45 Dimension theory of smooth dynamical systems

References:

[1] B\'{a}r\'{a}ny, Bal\'{a}zs; K\"{a}enm\"{a}ki, Antti, Ledrappier-Young formula and exact dimensionality of self-affine measures, Adv. Math., 318, 88-129 (2017) · Zbl 1457.37032 · doi:10.1016/j.aim.2017.07.015
[2] B\'{a}r\'{a}ny, Bal\'{a}zs; Hochman, Michael; Rapaport, Ariel, Hausdorff dimension of planar self-affine sets and measures, Invent. Math., 216, 3, 601-659 (2019) · Zbl 1414.28014 · doi:10.1007/s00222-018-00849-y
[3] Bougerol, Philippe; Lacroix, Jean, Products of random matrices with applications to Schr\"{o}dinger operators, Progress in Probability and Statistics 8, xii+283 pp. (1985), Birkh\"{a}user Boston, Inc., Boston, MA · Zbl 0572.60001 · doi:10.1007/978-1-4684-9172-2
[4] Benoist, Yves; Quint, Jean-Fran\c{c}ois, Random walks on reductive groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] 62, xi+323 pp. (2016), Springer, Cham · Zbl 1366.60002
[5] Einsiedler, Manfred; Ward, Thomas, Ergodic theory with a view towards number theory, Graduate Texts in Mathematics 259, xviii+481 pp. (2011), Springer-Verlag London, Ltd., London · Zbl 1206.37001 · doi:10.1007/978-0-85729-021-2
[6] Falconer, Kenneth, Techniques in fractal geometry, xviii+256 pp. (1997), John Wiley & Sons, Ltd., Chichester · Zbl 0869.28003
[7] Falconer, Kenneth J.; Jin, Xiong, Exact dimensionality and projections of random self-similar measures and sets, J. Lond. Math. Soc. (2), 90, 2, 388-412 (2014) · Zbl 1305.28010 · doi:10.1112/jlms/jdu031
[8] D. -J. Feng, Dimension of invariant measures for affine iterated function systems. preprint, 2019. 1901.01691.
[9] Feng, De-Jun; Hu, Huyi, Dimension theory of iterated function systems, Comm. Pure Appl. Math., 62, 11, 1435-1500 (2009) · Zbl 1230.37031 · doi:10.1002/cpa.20276
[10] Furstenberg, Hillel, Ergodic fractal measures and dimension conservation, Ergodic Theory Dynam. Systems, 28, 2, 405-422 (2008) · Zbl 1154.37322 · doi:10.1017/S0143385708000084
[11] Guivarc’h, Yves, Produits de matrices al\'{e}atoires et applications aux propri\'{e}t\'{e}s g\'{e}om\'{e}triques des sous-groupes du groupe lin\'{e}aire, Ergodic Theory Dynam. Systems, 10, 3, 483-512 (1990) · Zbl 0715.60008 · doi:10.1017/S0143385700005708
[12] Hochman, Michael, On self-similar sets with overlaps and inverse theorems for entropy, Ann. of Math. (2), 180, 2, 773-822 (2014) · Zbl 1337.28015 · doi:10.4007/annals.2014.180.2.7
[13] M. Hochman. On self-similar sets with overlaps and inverse theorems for entropy in \(\mathbbR^d \). to appear in Memoirs of the American Mathematical Society, 2015. http://arxiv.org/abs/1503.09043.
[14] M. Hochman and A. Rapaport, Hausdorff dimension of planar self-affine sets and measures with overlaps. preprint, 2019. arXiv:1904.09812. · Zbl 1414.28014
[15] Hochman, Michael; Solomyak, Boris, On the dimension of Furstenberg measure for \(SL_2(\mathbb{R})\) random matrix products, Invent. Math., 210, 3, 815-875 (2017) · Zbl 1398.37012 · doi:10.1007/s00222-017-0740-6
[16] Jordan, Thomas; Pollicott, Mark; Simon, K\'{a}roly, Hausdorff dimension for randomly perturbed self affine attractors, Comm. Math. Phys., 270, 2, 519-544 (2007) · Zbl 1119.28004 · doi:10.1007/s00220-006-0161-7
[17] Kac, M., On the notion of recurrence in discrete stochastic processes, Bull. Amer. Math. Soc., 53, 1002-1010 (1947) · Zbl 0032.41802 · doi:10.1090/S0002-9904-1947-08927-8
[18] Ledrappier, F., Quelques propri\'{e}t\'{e}s des exposants caract\'{e}ristiques. \'{E}cole d’\'{e}t\'{e} de probabilit\'{e}s de Saint-Flour, XII-1982, Lecture Notes in Math. 1097, 305-396 (1984), Springer, Berlin · Zbl 0541.00006 · doi:10.1007/BFb0099434
[19] Ledrappier, F.; Young, L.-S., The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula, Ann. of Math. (2), 122, 3, 509-539 (1985) · Zbl 0605.58028 · doi:10.2307/1971328
[20] Lessa, Pablo, Entropy and dimension of disintegrations of stationary measures, Trans. Amer. Math. Soc. Ser. B, 8, 105-129 (2021) · Zbl 1462.37007 · doi:10.1090/btran/60
[21] Maker, Philip T., The ergodic theorem for a sequence of functions, Duke Math. J., 6, 27-30 (1940) · Zbl 0027.07705
[22] Mattila, Pertti, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics 44, xii+343 pp. (1995), Cambridge University Press, Cambridge · Zbl 0819.28004 · doi:10.1017/CBO9780511623813
[23] Oseledec, V. I., A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Ob\v{s}\v{c}., 19, 179-210 (1968) · Zbl 0236.93034
[24] Parry, William, Topics in ergodic theory, Cambridge Tracts in Mathematics 75, x+110 pp. (1981), Cambridge University Press, Cambridge-New York · Zbl 1096.37001
[25] Ruelle, David, Ergodic theory of differentiable dynamical systems, Inst. Hautes \'{E}tudes Sci. Publ. Math., 50, 27-58 (1979) · Zbl 0426.58014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.