×

Sato-Tate equidistribution of certain families of Artin \(L\)-functions. (English) Zbl 1469.11443

This paper streched out over 62 pages, has to do with several examples and arithmetic statistics of families of \(L\)-function dealing with the Katz-Sarnak heuristics. The list of References counts for 79 papers and books. Out of those, of older and recent times, important developments are combined, treated and extended. In particular, reference [in: Families of automorphic forms and the trace formula. Proceedings of the Simons symposium, Puerto Rico, 2014. Cham: Springer. 531–578 (2016; Zbl 1417.11078)] is used as a framework; it concerns the contribution by P. Sarnak et al. The Introduction of the paper under review consists of nine pages, whereas the next sections 2, 3, 4 preface in detail for results to be given in section 5, so-called \(S_n\)-families, in particular the parametric family of monogenized degree-\(n\) numbers and the proof of their Theorem 1.1 concerning Sato-Tate equidistribution. In section 6, one finds geometric families in which the fields yield \(L\)-functions in the families where the fields do not all have the same Galois group. Skipping section 7 here, one sees in section 8 the appearance of one-parameter families of quaternionic fields.
The paper can be regarded as informative and as a worked-out compendium of the following papers in the References (to name but a few): work by M. Bhargava [Ann. Math. (2) 162, No. 2, 1031–1063 (2005; Zbl 1159.11045); among others]; work by D. Fiorilli et al. [Math. Proc. Camb. Philos. Soc. 160, No. 2, 315–351 (2016; Zbl 1371.14026)]; N. M. Katz [Enseign. Math. (2) 59, No. 3–4, 359–377 (2013; Zbl 1320.14042)], N. M. Katz and P. Sarnak [Bull. Am. Math. Soc., New Ser. 36, No. 1, 1–26 (1999; Zbl 0921.11047)]; Sarnak et al. [loc. cit. ]; M. M. Wood [Algebra Number Theory 2, No. 4, 391–405 (2008; Zbl 1176.11063); among others]; etc., etc.
A very rich paper, indeed! It took me a few hours in order and organize the totality of ideas, theorems, connections, and the like. But it was worth to do so. The contents of the paper give a good impression of results in this area, starting (say) in modern times, \(\pm\) 1990, up to now, thereby strategically involving results from the past.

MSC:

11R42 Zeta functions and \(L\)-functions of number fields
11M41 Other Dirichlet series and zeta functions
11M50 Relations with random matrices

References:

[1] J. V.Armitage, ‘Zeta functions with a zero at ’, Invent. Math.15 (1972), 199-205. · Zbl 0233.12006
[2] A.Ash, J.Brakenhoff and T.Zarrabi, ‘Equality of polynomial and field discriminants’, Exp. Math.16(3) (2007), 367-374. · Zbl 1166.11035
[3] A. M.Baily, ‘On the density of discriminants of quartic fields’, J. Reine Angew. Math.315 (1980), 190-210. · Zbl 0421.12007
[4] K.Belabas, M.Bhargava and C.Pomerance, ‘Error estimates for the Davenport-Heilbronn theorems’, Duke Math. J.153(1) (2010), 173-210. · Zbl 1227.11114
[5] M.Bhargava, ‘Higher composition laws III: the parametrization of quartic rings’, Ann. of Math. (2)159(3) (2004), 1329-1360. · Zbl 1169.11045
[6] M.Bhargava, ‘Higher composition laws IV: the parametrization of quintic rings’, Ann. of Math. (2)167(1) (2008), 53-94. · Zbl 1173.11058
[7] M.Bhargava, ‘The density of discriminants of quartic rings and fields’, Ann. of Math. (2)162(2) (2005), 1031-1063. · Zbl 1159.11045
[8] M.Bhargava, ‘The density of discriminants of quintic rings and fields’, Ann. of Math. (2)172(3) (2010), 1559-1591. · Zbl 1220.11139
[9] M.Bhargava, ‘Mass formulae for extensions of local fields, and conjectures on the density of number field discriminants’, Int. Math. Res. Not. IMRN (2007), no. 17, Art. ID rnm052, 20 pp. · Zbl 1145.11080
[10] M.Bhargava, A.Shankar and J.Tsimerman, ‘On the Davenport-Heilbronn theorems and second order terms’, Invent. Math.193(2) (2013), 439-499. · Zbl 1294.11191
[11] M.Bhargava, A.Shankar and X.Wang, ‘Squarefree values of polynomial discriminants I’, Preprint, 2016, arXiv:1611.09806. · Zbl 1492.11150
[12] M.Bhargava, A.Shankar and X.Wang, ‘Geometry-of-numbers methods over global fields I: prehomogeneous vector spaces’, Preprint, 2015, arXiv:1512.03035.
[13] B. J.Birch and J. R.Merriman, ‘Finiteness theorems for binary forms with given discriminant’, Proc. Lond. Math. Soc. (3)24 (1972), 385-394. · Zbl 0248.12002
[14] A. R.Booker and A.Strömbergsson, ‘Numerical computations with the trace formula and the Selberg eigenvalue conjecture’, J. Reine Angew. Math.607 (2007), 113-161. · Zbl 1147.11030
[15] D.Buchsbaum and D.Eisenbud, ‘Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3’, Amer. J. Math.99(3) (1977), 447-485. · Zbl 0373.13006
[16] F.Calegari, ‘The Artin conjecture for some S_5 -extensions’, Math. Ann.356(1) (2013), 191-207. · Zbl 1329.11045
[17] J. W. S.Cassels, Rational Quadratic Forms, London Mathematical Society Monographs, 13 (Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978), pp. xvi+413. · Zbl 0395.10029
[18] J. W. S.Cassels and A.Fröhlich, Algebraic Number Theory, (Academic Press, London-New York, 1967). · Zbl 0153.07403
[19] P. J.Cho and H. H.Kim, ‘Low lying zeros of Artin L-functions’, Math. Z.279(3-4) (2015), 669-688. · Zbl 1320.11045
[20] P. J.Cho and H. H.Kim, ‘n-level densities of Artin L-functions’, Int. Math. Res. Not. IMRN (17) (2015), 7861-7883. · Zbl 1385.11027
[21] H.Cohen, F.Diaz y Diaz and M.Olivier, ‘Enumerating Quartic Dihedral Extensions of ℚ’, Compos. Math.133(1) (2002), 65-93. · Zbl 1050.11104
[22] J. B.Conrey and K.Soundararajan, ‘Real zeros of quadratic Dirichlet L-functions’, Invent. Math.150(1) (2002), 1-44. · Zbl 1042.11053
[23] C. W.Curtis, Pioneers of Representation Theory: Frobenius, Burnside, Schur, and Brauer, History of Mathematics, 15 (American Mathematical Society, Providence, RI, 1999). · Zbl 0939.01007
[24] H.Davenport and H.Heilbronn, ‘On the density of discriminants of cubic fields II’, Proc. R. Soc. Lond. Ser. A322(1551) (1971), 405-420. · Zbl 0212.08101
[25] C.David, J.Fearnley and H.Kisilevsky, ‘On the vanishing of twisted L-functions of elliptic curves’, Experiment. Math.13(2) (2004), 185-198. · Zbl 1115.11033
[26] R.Dedekind, ‘Konstruktion von Quaternionkörpern’, inGesammelte mathematische Werke, Bd. 2 (Vieweg & Sohn, Braunschweig, 1931), 376-384. · JFM 57.0036.01
[27] P.Deligne, SGA —Cohomologie étale, Lecture Notes in Mathematics, 569 (Springer, New York, 1977). · Zbl 0345.00010
[28] B. N.Delone and D. K.Faddeev, The Theory of Irrationalities of the Third Degree, Translations of Mathematical Monographs, 10 (American Mathematical Society, Providence, RI, 1964). · Zbl 0133.30202
[29] A.-W.Deng, ‘Rational points on weighted projective spaces’, Preprint, 1998,arXiv:9812082.
[30] R.Dietmann, ‘On the distribution of Galois groups’, Mathematika58(1) (2012), 35-44. · Zbl 1276.11184
[31] J.Ellenberg, L. B.Pierce and M. M.Wood, ‘On ℓ-torsion in class groups of number fields’, Algebra Number Theory11(8) (2017), 1739-1778. · Zbl 1398.11136
[32] A.Entin, E.Roditty-Gershon and Z.Rudnick, ‘Low-lying zeros of quadratic Dirichlet L-functions, hyper-elliptic curves and random matrix theory’, Geom. Funct. Anal.23(4) (2013), 1230-1261. · Zbl 1321.11095
[33] D.Fiorilli, J.Parks and A.Södergren, ‘Low-lying zeros of elliptic curve L-functions: beyond the ratios conjecture’, Math. Proc. Cambridge Philos. Soc.160(2) (2016), 315-351. · Zbl 1371.14026
[34] É.Fouvry, F.Luca, F.Pappalardi and I. E.Shparlinski, ‘Counting dihedral and quaternionic extensions’, Trans. Amer. Math. Soc.363(6) (2011), 3233-3253. · Zbl 1235.11097
[35] G.Frobenius and I.Schur, ‘Über die reellen Darstellungen der endlichen Gruppen’, Sitzungsber, Preuss, Akad. d (1906), 186-208. · JFM 37.0161.01
[36] A.Fröhlich, ‘Artin root numbers and normal integral bases for quaternion fields’, Invent. Math.17(2) (1972), 143-166. · Zbl 0261.12008
[37] A.Fröhlich and J.Queyrut, ‘On the functional equation of the Artin L-function for characters of real representations’, Invent. Math.20 (1973), 125-138. · Zbl 0256.12010
[38] W. T.Gan, B.Gross and G.Savin, ‘Fourier coefficients of modular forms on G_2’, Duke Math. J.115(1) (2002), 105-169. · Zbl 1165.11315
[39] H.Heilbronn, ‘On the 2-classgroup of cubic fields’, inStudies in Pure Mathematics (Presented to Richard Rado) (Academic Press, London, 1971), 117-119. · Zbl 0249.12012
[40] H.Iwaniec, ‘Conversations on the exceptional character’, inAnalytic Number Theory, Lecture Notes in Mathematics, 1891 (Springer, Berlin, 2006), 97-132. · Zbl 1147.11047
[41] C. U.Jensen and N.Yui, ‘Quaternion extensions’, inAlgebraic Geometry and Commutative Algebra, Vol. I (Kinokuniya, Tokyo, 1988), 155-182. · Zbl 0691.12011
[42] N. M.Katz, ‘Sato-Tate in the higher dimensional case: elaboration of 9. 5. 4 in Serre’s N_X(p) book’, Enseign. Math.59(3-4) (2013), 359-377. · Zbl 1320.14042
[43] N. M.Katz and P.Sarnak, ‘Zeroes of zeta functions and symmetry’, Bull. Amer. Math. Soc. (N.S.)36(1) (1999), 1-26. · Zbl 0921.11047
[44] K. S.Kedlaya, ‘Mass formulas for local Galois representations’, Int. Math. Res. Not. IMRN (17) (2007), Art. ID rnm021, 26 pp. · Zbl 1175.11071
[45] I.Kiming, ‘Explicit classification of some 2-extensions of a field of characteristic different from 2’, Canad. J. Math.42(5) (1990), 825-855. · Zbl 0725.12004
[46] J.Klüners, ‘Über die Asymptotik von Zahlkörpern mit vorgegebener Galoisgruppe’, Habilitationsschrift, Universität Kassel, 2005. · Zbl 1097.11056
[47] E.Kowalski, ‘Families of cusp forms’, inActes de la Conférence ‘Théorie des Nombres et Applications’, Publ. Math. Besançon Algèbre Théorie Nr. (Presses Univ. Franche-Comté, Besançon, 2013), 5-40. · Zbl 1312.11030
[48] J. C.Lagarias and B. L.Weiss, ‘Splitting behavior of S_n-polynomials’, Res. Number Theory1 (2015), Art. 7, 30 pp. · Zbl 1378.11092
[49] T. Y.Lam, The Algebraic Theory of Quadratic Forms, Mathematics Lecture Note Series (Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, MA, 1980). · Zbl 0437.10006
[50] R. J.Lemke Oliver and F.Thorne, ‘The number of ramified primes in number fields of small degree’, Proc. Amer. Math. Soc.145(8) (2017), 3201-3210. · Zbl 1428.11196
[51] F.Levi, ‘Kubische Zahlkörper und binäre kubische Formenklassen’, Ber. Sächs. Akad. Wiss. Leipzig, Math.-Naturwiss66 (1914), 26-37. · JFM 45.0336.02
[52] I. G.Macdonald, Symmetric Functions and Orthogonal Polynomials, University Lecture Series, 12 (American Mathematical Society, Providence, RI, 1998). · Zbl 0887.05053
[53] M.Munsch, ‘Character sums over squarefree and squarefull numbers’, Arch. Math. (Basel)102(6) (2014), 555-563. · Zbl 1297.11097
[54] J.Nakagawa, ‘Binary forms and orders of algebraic number fields’, Invent. Math.97(2) (1989), 219-235. · Zbl 0647.10018
[55] J.Neukirch, Class Field Theory, Grundlehren der Mathematischen Wissenschaften, 280 (Springer, Berlin, 1986). · Zbl 0587.12001
[56] R.Perlis, ‘On the equation 𝜁_K(s) =𝜁_K^′(s)’, J. Number Theory9(3) (1977), 342-360. · Zbl 0389.12006
[57] E.Peyre, ‘Hauteurs et mesures de Tamagawa sur les variétés de Fano’, Duke Math. J.79(1) (1995), 101-218. · Zbl 0901.14025
[58] H.Reichardt, ‘Über Normalkörper mit Quaternionengruppe’, Math. Z.41(1) (1936), 218-221. · JFM 62.0169.02
[59] M.Rubinstein, ‘Low-lying zeros of L-functions and random matrix theory’, Duke Math. J.109(1) (2001), 147-181. · Zbl 1014.11050
[60] Z.Rudnick and P.Sarnak, ‘Zeros of principal L-functions and random matrix theory’, Duke Math. J.81(2) (1996), 269-322. · Zbl 0866.11050
[61] P.Sarnak, S. W.Shin and N.Templier, ‘Families of L-functions and their symmetry’, inProceedings of Simons Symposia, Families of Automorphic Forms and the Trace Formula (Springer Verlag, 2016), 531-578. · Zbl 1417.11078
[62] M.Sato and T.Kimura, ‘A classification of irreducible prehomogeneous vector spaces and their relative invariants’, Nagoya Math. J.65 (1977), 1-155. · Zbl 0321.14030
[63] J.-P.Serre, Lectures on N_X(p), Chapman & Hall/CRC Research Notes in Mathematics, 11 (CRC Press, Boca Raton, FL, 2012). · Zbl 1238.11001
[64] A.Shankar and J.Tsimerman, ‘Counting S_5 -fields with a power saving error term’, Forum Math. Sigma2 (2014), e13 (8 pages). · Zbl 1328.11109
[65] S. W.Shin and N.Templier, ‘Sato-Tate theorem for families and low-lying zeros of automorphic L-functions’, Invent. Math.203(1) (2016), 1-177. · Zbl 1408.11042
[66] C. L.Siegel, ‘The average measure of quadratic forms with given determinant and signature’, Ann. of Math. (2)45 (1944), 667-685. · Zbl 0063.07007
[67] K.Soundararajan, ‘Nonvanishing of quadratic Dirichlet L-functions at ’, Ann. of Math. (2)152(2) (2000), 447-488. · Zbl 0964.11034
[68] T.Taniguchi and F.Thorne, ‘Secondary terms in counting functions for cubic fields’, Duke Math. J.162(13) (2013), 2451-2508. · Zbl 1294.11192
[69] J.Tate, ‘Number theoretic background’, inAutomorphic Forms, Representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proceedings of Symposia in Pure Mathematics, XXXIII (American Mathematical Society, Providence, RI, 1979), 3-26. · Zbl 0422.12007
[70] O.Taussky, ‘Pairs of sums of three squares of integers whose product has the same property’, inGeneral Inequalities 2 (Proc. Second Internat. Conf., Oberwolfach, 1978) (Birkhäuser, Basel-Boston, MA, 1980), 29-36. · Zbl 0435.10014
[71] M.-F.Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, 800 (Springer, Berlin, 1980). · Zbl 0422.12008
[72] K. H.Wilson, ‘Three perspectives on <![CDATA \([n]]\)> points in <![CDATA \([\mathbb{P}^{n-2}]]\)>’, PhD Thesis, Princeton University, 2012.
[73] E.Witt, ‘Konstruktion von galoisschen Körpern der Charakteristik p zu vorgegebener Gruppe der Ordung p^f’, J. Reine Angew. Math.174 (1936), 237-245. · JFM 62.0110.02
[74] M. M.Wood, ‘Moduli spaces for rings and ideals’, PhD Thesis, Princeton University, June 2009.
[75] M. M.Wood, ‘Mass formulas for local Galois representations to wreath products and cross products’, Algebra Number Theory4 (2008), 391-405. · Zbl 1176.11063
[76] M. M.Wood, ‘Rings and ideals parameterized by binary n-ic forms’, J. Lond. Math. Soc. (2)83(1) (2011), 208-231. · Zbl 1228.11053
[77] M. M.Wood, ‘How to determine the splitting type of a prime, unpublished note’, available at http://www.math.wisc.edu/∼mmwood/Splitting.pdf.
[78] D. J.Wright and A.Yukie, ‘Prehomogeneous vector spaces and field extensions’, Invent. Math.110(2) (1992), 283-314. · Zbl 0803.12004
[79] A.Yang, ‘Distribution problems associated to zeta functions and invariant theory’, PhD Thesis, Princeton University, 2009.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.