×

Shifted convolution sums related to Hecke-Maass forms. (English) Zbl 1469.11083

Summary: Let \(\phi(z)\) be a primitive Hecke-Maass cusp forms with Laplace eigenvalue \(\frac{1}{4}+t^2\). Denote by \(L(s,\mathrm{sym}^m\phi)\) the \(m\)-th symmetric power \(L\)-function associated to \(\phi\) and by \(\lambda_{\mathrm{sym}^m\phi}(n)\) the \(n\)-th coefficient of the Dirichlet expansion of \(L(s,\mathrm{sym}^m\phi)\). For any nonzero integer \(\ell\) we prove \[ \sum\limits_{n\leqslant x}|\lambda_{\phi}(n)\lambda_{\phi}(n+\ell)|\ll_{\phi,\ell}\frac{x}{(\log x)^{0.187}}\quad (x\geqslant 3). \] This improves R. Holowinsky’s corresponding result [Ann. Math. (2) 172, No. 2, 1499–1516 (2010; Zbl 1214.11054)], which requires \(\tfrac{1}{6}\) in place of 0.187. for all \(x\geqslant 3\). Further assuming that \(L(s,\mathrm{sym}^{10}\phi)\) and \(L(s,\mathrm{sym}^{12}\phi)\) are automorphic cuspidal, we obtain a conditional generalization to the symmetric square case: \[ \sum\limits_{n\leqslant x}|\lambda_{\mathrm{sym}^2\phi}(n)\lambda_{\mathrm{sym}^2\phi}(n+\ell)|\ll_{\phi,\ell}\frac{x}{(\log x)^{0.196}}\quad (x\geqslant 3). \]

MSC:

11F30 Fourier coefficients of automorphic forms
11F11 Holomorphic modular forms of integral weight
11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations

Citations:

Zbl 1214.11054
Full Text: DOI

References:

[1] Holowinsky, R., A sieve method for shifted convolution sums, Duke Math. J., 146, 401-448 (2009) · Zbl 1218.11089 · doi:10.1215/00127094-2009-002
[2] Holowinsky, R., Sieving for Mass equidistribution, Ann. Math., 172, 1499-1516 (2010) · Zbl 1214.11054 · doi:10.4007/annals.2010.172.1499
[3] Iwaniec, H., Sarnak, P.: Perspectives of the analytic theory of \(L\)-functions. Geom. Funct. Anal., special volume, 705-741 · Zbl 0996.11036
[4] Kim, H-H; Sarnak, P., Appendix 2: refined estimates towards the Ramanujan and Selberg conjectures, J. Am. Math. Soc., 16, 175-181 (2003)
[5] Lü, G-S, On averages of Fourier coefficients of Maass cusp forms, Archiv der Math., 100, 255-265 (2013) · Zbl 1276.11063 · doi:10.1007/s00013-013-0494-3
[6] Lau, Y-K; Lü, G-S, Sums of Fourier coefficients of cusp forms, Q. J. Math., 62, 687-716 (2011) · Zbl 1269.11044 · doi:10.1093/qmath/haq012
[7] Lau, Y-K; Lü, G-S; Wu, J., Integral power sums of Hecke eigenvalues, Acta Arith., 152, 2, 193-207 (2011) · Zbl 1300.11042 · doi:10.4064/aa150-2-7
[8] Soundararajan, K., Weak subconvexity of central values of \(L\)-function, Ann. Math., 172, 1469-1498 (2010) · Zbl 1234.11066 · doi:10.4007/annals.2010.172.1469
[9] Tenenbaum, G.: Introduction to Analytic and Probabilistic Number Theory, Translated from the second French edition (1995) by C. B. Thomas, Cambridge Studies in Advanced Mathematics 46, xvi+448 pp, Cambridge University Press, Cambridge, (1995) · Zbl 0831.11001
[10] Wu, J.; Xu, Z., Power sums of Hecke eigenvalues of Maass cusp forms, Ramanujan J., 36, 439-453 (2015) · Zbl 1369.11034 · doi:10.1007/s11139-013-9520-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.