×

Boundary value problem on a weighted graph relevant to the static analysis of truss structures. (English) Zbl 1468.74032

Summary: The boundary value problem on a weighted graph relevant to the static analysis of truss structures with linear elastic bars is presented along with strategies for assembling the corresponding algebraic system of equations.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74K99 Thin bodies, structures
74S50 Applications of graph theory in solid mechanics
05C90 Applications of graph theory
34B45 Boundary value problems on graphs and networks for ordinary differential equations
Full Text: DOI

References:

[1] E. Bendito, A. Carmona, and A. M. Encinas, Boundary value problems on weighted networks, Discrete Appl. Math., 156 (2008), pp. 3443-3463, https://doi.org/10.1016/j.dam.2008.02.008. · Zbl 1163.65079
[2] E. Bendito, A. Carmona, A. M. Encinas, and J. M. Gesto, The curl of a weighted network, Appl. Anal. Discrete Math., 2 (2008), pp. 241-254. · Zbl 1224.39008
[3] A. Carmona, Boundary value problems on finite networks, in Combinatorial Matrix Theory, Springer, Cham, 2018, pp. 173-217, https://doi.org/10.1007/978-3-319-70953-6. · Zbl 1404.15006
[4] S.-Y. Chung and C. A. Berenstein, \( \omega \)-harmonic functions and inverse conductivity problems on networks, SIAM J. Appl. Math., 65 (2005), pp. 1200-1226, https://doi.org/10.1137/S0036139903432743. · Zbl 1068.05040
[5] S.-Y. Chung, Y.-S. Chung, and J.-H. Kim, Diffusion and elastic equations on networks, Publ. Res. Inst. Math. Sci., 43 (2007), pp. 699-726. · Zbl 1183.94067
[6] T. G. Draper, F. G. Vasquez, J. C.-L. Tse, T. E. Wallengren, and K. Zheng, Matrix valued inverse problems on graphs with application to mass-spring-damper systems, Netw. Heterog., 15 (2020), pp. 1-28, https://doi.org/10.3934/nhm.2020001. · Zbl 1437.05136
[7] A. Elmoataz, O. Lezoray, and S. Bougleux, Nonlocal discrete regularization on weighted graphs: a framework for image and manifold processing, IEEE Trans. Image Process., 17 (2008), pp. 1047-1060, https://doi.org/10.1109/TIP.2008.924284. · Zbl 1143.94308
[8] M. S. Gockenbach, Partial Differential Equations: Analytical and Numerical Methods, 2nd ed., SIAM, Philadelphia, PA, 2011. · Zbl 1410.65002
[9] J. E. Graver, B. Servatius, and H. Servatius, Combinatorial Rigidity, Grad. Stud. Math., American Mathematical Society, Providence, RI, 1993. · Zbl 0788.05001
[10] A. Kaveh, Optimal Structural Analysis, 2nd ed., John Wiley & Sons, New York, 2006. · Zbl 1138.74002
[11] S. Krenk and J. Høgsberg, Statics and Mechanics of Structures, Springer, Cham, 2013, https://doi.org/10.1007/978-94-007-6113-1. · Zbl 1245.74021
[12] D. L. Logan, A First Course in the Finite Element Method, 5th ed., Cengage Learning, Boston, 2011.
[13] V. H. Nguyen, Constructive Approaches to the Rigidity of Frameworks, Ph.D thesis, Université de Grenoble, 2013.
[14] A. Recski, Matroid Theory and Its Applications in Electric Network Theory and in Statics, Vol. 6, Springer-Verlag, Berlin, 1989. · Zbl 0729.05012
[15] F. G. Vasquez, G. W. Milton, and D. Onofrei, Complete characterization and synthesis of the response function of elastodynamic networks, J. Elasticity, 102 (2011), pp. 31-54, https://doi.org/10.1007/s10659-010-9260-y. · Zbl 1273.74144
[16] H. Yanai, K. Takeuchi, and Y. Takane, Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition, Springer-Verlag, Berlin, 2011, https://doi.org/10.1007/978-1-4419-9887-3. · Zbl 1279.15003
[17] D. Zhou and B. Schölkopf, Transductive Inference with Graphs, technical report, Max Planck Institute for Biological Cybernetics, 2004.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.