×

On a method for solving inelastic deformation problems of a laminated composite. (English. Russian original) Zbl 1468.74010

Russ. Math. 65, No. 6, 47-56 (2021); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2021, No. 6, 55-66 (2021).
Summary: To analyze the deformation process of layered structural elements of inelastic materials, an approach is proposed that makes it easier to solve the problem with complex types of loading. In this method, the package is homogenized, basing on its replacement by a plate with a homogeneous structure through the thickness, the mechanical characteristics of which are determined by identification methods based on the results of numerical experiments with simple types of loading. The results of solving the formulated problem of cyclic tension of three-layer plates with linearly elastic outer layers and a viscoelastic middle layer are presented, obtained by the standard and proposed method.

MSC:

74E30 Composite and mixture properties
74K20 Plates
74D10 Nonlinear constitutive equations for materials with memory
74S99 Numerical and other methods in solid mechanics
Full Text: DOI

References:

[1] Rabotnov, Yu. N., Creep of Structural Elements (1966), Moscow: Nauka, Moscow · Zbl 0152.42905
[2] IlТyushin, A. A.; Pobedrya, B. E., Foundations of the Mathematical Theory of Thermoviscoelasticity (1970), Moscow: Nauka, Moscow
[3] Christensen, R. M., Mechanics of Composite Materials (1979), New York: Wiley, New York
[4] Koltunov, M. A., Creep and Relaxation (1976), Moscow: Vysshaya Shkola, Moscow
[5] Pobedrya, B. E., Mechanics of Composite Materials (1984), Moscow: MGU, Moscow · Zbl 0555.73069
[6] Kachanov, L. M., Creep Theory (1960), Moscow: Gos. Izd. Fiz. Matem. Lit., Moscow
[7] Malkin, A. Ya.; Isaev, A. I., Rheology: Concepts, Methods, Applications (2007), St. Petersburg: Professiya, St. Petersburg
[8] Shepery, R. A.; Sendeckyj, G. P., Viscoelastic Behavior of Composite Materials, Mechanics of Composite Materials, 102-195 (1974), New York: Academic Press, New York
[9] Malyi, V. I.; Trufanov, N. A., The Method of Quasi-constant Operators in the Theory of Viscoelasticity of Anisotropic Ageless Materials, Izv. An SSSR. Mekhan. Tv. Tela, 6, 148-154 (1987)
[10] Matveenko, V. P.; Troyanovskiy, I. E.; Tsaplina, G. S., Construction of Solutions to Problems of the Theory of Elasticity in the Form of Series in the Degree of Elastic Constants and their Application to Viscoelasticity, Prikl. Matem. i Mekhan., 60, 4, 651-659 (1996) · Zbl 0921.73053
[11] Kovalenko, A. D.; KilТčinski˘i, A. A., The Method of Variable Moduli in Problems of Linear Hereditary Elasticity, Prikladna. Meh., 6, 12, 27-34 (1970)
[12] Svetashkov, A. A., Time-effective Moduli of a Linear Viscoelastic Body, Mechan. of Composite Materials., 36, 37-44 (2000) · doi:10.1007/BF02681774
[13] Giannadakis, K.; Mannberg, P.; Joffe, R.; Varna, J., The Sources of Inelastic Behavior of Glass Fibre/Vinylester Non-crimp Fabric \([\pm45^{\circ}]_s\) Laminates, J. Reinforced Plastics and Composites, 30, 12, 1015-1028 (2011) · doi:10.1177/0731684411412644
[14] Yudin, V. E.; Volodin, V. P.; Gubanova, G. N., Features of the Viscoelastic Behavior of Carbon Plastics Based on a Polymer Matrix: Model Research and Calculation, Mekhan. Kompositnykh Mater., 5, 656-669 (1997)
[15] Peleshko, V. A., On the Construction of Defining Correlations for Viscoelasticity and Creep under Unsteady and Complex Loads, Izv. RAN MTT, 3, 144-165 (2006)
[16] Khokhlov, A. V., Two-sided Estimates for the Relaxation Function of the Linear Theory of Heredity through Relaxation Curves during RAMP Deformation and Methods of its Identification, Izv. RAN MTT, 3, 81-104 (2018)
[17] Dumansky, A. M.; Alimov, M. A.; Terekhin, A. V., Experiment- and computation-based Identification of Mechanical Properties of Fiber Reinforced Polymer Composites, J. Physics: Conf. Ser., 1158, 2 (2019)
[18] Van Paepegem, W.; De Baere, I.; Degrieck, J., Modeling the Nonlinear Shear Stress-strain Response of Fiber-reinforced Composites. Part I: Experimental results, Composite Sci. and Tech., 66, 1455-1464 (2006) · doi:10.1016/j.compscitech.2005.04.014
[19] Paimushin, V. N.; Kayumov, R. A.; Kholmogorov, S. A., Experimental Investigation of Residual Strain Formation Mechanisms in Composite Laminates under Cycling Loading, Uchenye Zapiski Kazanskogo Universiteta, Ser. Fiziko-Matem. Nauki, 159, 4, 473-492 (2017)
[20] Paimushin, V. N.; Kholmogorov, S. A., Physical-mechanical Properties of a Fiber Reinforced Composite Based on an ELUR-P Carbon Tape and XT-118 Binder, Mechan. of Composite Materials, 54, 1, 2-12 (2018) · doi:10.1007/s11029-018-9712-1
[21] Paimushin, V. N.; Kayumov, R. A.; Kholmogorov, S. A., Deformation Features and Models of \([\pm45^{\circ}]_{2s}\) Cross-Ply Fiber-Reinforced Plastics in Tension, Mechan. Composite Materials, 55, 2, 141-154 (2019) · doi:10.1007/s11029-019-09800-5
[22] Paimushin, V. N.; Kayumov, R. A.; Kholmogorov, S. A.; Shishkin, V. M., Defining Relations in Mechanics of Cross-Ply Fiber Reinforced Plastics Under Short-Term and Long-Term Monoaxial Load, Russian Mathematics, 62, 6, 75-79 (2018) · Zbl 1433.74039 · doi:10.3103/S1066369X18060087
[23] Paimushin, V. N.; Kayumov, R. A.; Firsov, V. A.; Gazizullin, R. K.; Kholmogorov, S. A.; Shishov, M. A., Tension and Compression of Flat \([\pm45^{\circ}]_{2s}\) Specimens from Fiber Reinforced Plastic: Numerical and Experimental Investigation of Forming Stresses and Strains, Uchenye Zapiski Kazanskogo Universiteta, Seriya Fiziko-Matematicheskie Nauki, 161, 1, 86-109 (2019) · doi:10.26907/2541-7746.2019.1.86-109
[24] Paimushin, V. N., The Analytical-Computational-Experimental Technique For Determining of The Critical Loadings And Free Oscillation Frequencies of Deforming Solid Bodies, Dokl. Akad. Nauk., 330, 1, 52-53 (1993)
[25] Kayumov, R. A., Extended Problem of Identifying the Mechanical Characteristics of Materials Based on the Results of Structural Tests, Izv. RAN. Mekhan. Tv. Tela, 2, 94-105 (2004)
[26] Nordin, L. O.; Varna, J., Methodology for Parameter Identification in Nonlinear Viscoelastic Material Model, Mechan. Time-Dependent Materials, 9, 4, 259-280 (2006)
[27] Graupe, D., Identification of system (1976), New York: Huntington, New York · Zbl 0385.93016
[28] Alfutov, N. A.; Zinov’ev, P. A.; Popov, B. G., Calculation of Multilayer Plates and Shells Made of Composite Materials (1979), Moscow: Mir, Moscow
[29] Grigolyuk, E. I.; Kulikov, G. M., Multilayer Reinforced Shells (1988), Moscow: Mashinostroenie, Moscow
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.