×

Interaction models for functional regression. (English) Zbl 1468.62201

Summary: A functional regression model with a scalar response and multiple functional predictors is proposed that accommodates two-way interactions in addition to their main effects. The proposed estimation procedure models the main effects using penalized regression splines, and the interaction effect by a tensor product basis. Extensions to generalized linear models and data observed on sparse grids or with measurement error are presented. A hypothesis testing procedure for the functional interaction effect is described. The proposed method can be easily implemented through existing software. Numerical studies show that fitting an additive model in the presence of interaction leads to both poor estimation performance and lost prediction power, while fitting an interaction model where there is in fact no interaction leads to negligible losses. The methodology is illustrated on the AneuRisk65 study data.

MSC:

62-08 Computational methods for problems pertaining to statistics
62G08 Nonparametric regression and quantile regression
62P10 Applications of statistics to biology and medical sciences; meta analysis

References:

[1] Amato, U.; Antoniadis, A.; De Feis, I., Dimension reduction in functional regression with applications, Comput. Statist. Data Anal., 50, 9, 2422-2446, (2006) · Zbl 1445.62078
[2] Anderssen, R.; Bloomfield, P., A time series approach to numerical differentiation, Technometrics, 16, 1, 69-75, (1974) · Zbl 0286.65012
[3] Aneiros-Pérez, G.; Vieu, P., Semi-functional partial linear regression, Statist. Probab. Lett., 76, 11, 1102-1110, (2006) · Zbl 1090.62036
[4] Aneiros-Pérez, G.; Vieu, P., Nonparametric time series prediction: A semi-functional partial linear modeling, J. Multivariate Anal., 99, 5, 834-857, (2008) · Zbl 1133.62075
[5] Aneiros-Pérez, G.; Vieu, P., Partial linear modelling with multi-functional covariates, Comput. Statist., 1-25, (2015)
[6] Bongiorno, E. G.; Salinelli, E.; Goia, A.; Vieu, P., Contributions in infinite-dimensional statistics and related topics, (2014), Società Editrice Esculapio · Zbl 1377.62023
[7] Cardot, H.; Ferraty, F.; Sarda, P., Spline estimators for the functional linear model, Statist. Sinica, 13, 571-591, (2003) · Zbl 1050.62041
[8] Chen, D.; Hall, P.; Müller, H.-G., Single and multiple index functional regression models with nonparametric link, Ann. Statist., 39, 3, 1720-1747, (2011) · Zbl 1220.62040
[9] Cheng, W.; Dryden, I. L.; Hitchcock, D. B.; Le, H., Analysis of aneurisk65 data: internal carotid artery shape analysis, Electron. J. Stat., 8, 2, 1905-1913, (2014) · Zbl 1302.62228
[10] Cox, D. R.; Hinkley, D. V., Theoretical statistics, (1979), CRC Press · Zbl 0334.62003
[11] Craven, P.; Wahba, G., Smoothing noisy data with spline functions, Numer. Math., 31, 4, 377-403, (1978) · Zbl 0377.65007
[12] de Boor, C., A practical guide to splines, vol. 27, (1978), Springer-Verlag New York · Zbl 0406.41003
[13] Delsol, L., No effect tests in regression on functional variable and some applications to spectrometric studies, Comput. Statist., 28, 4, 1775-1811, (2013) · Zbl 1306.65052
[14] Di, C.-Z.; Crainiceanu, C. M.; Caffo, B. S.; Punjabi, N. M., Multilevel functional principal component analysis, Ann. Appl. Stat., 3, 1, 458-488, (2009) · Zbl 1160.62061
[15] Eilers, P. H.; Marx, B. D., Flexible smoothing with B-splines and penalties, Statist. Sci., 11, 2, 89-102, (1996) · Zbl 0955.62562
[16] Eilers, P. H.; Marx, B. D., Multidimensional penalized regression signal regression, Technometrics, 47, 1, 13-22, (2005)
[17] Ferraty, F.; Goia, A.; Salinelli, E.; Vieu, P., Functional projection pursuit regression, TEST, 22, 2, 293-320, (2013) · Zbl 1367.62117
[18] Ferraty, F.; Vieu, P., Nonparametric functional data analysis: theory and practice, (2006), Springer Science & Business Media · Zbl 1119.62046
[19] Ferraty, F.; Vieu, P., Additive prediction and boosting for functional data, Comput. Statist. Data Anal., 53, 4, 1400-1413, (2009) · Zbl 1452.62989
[20] Gertheiss, J.; Maity, A.; Staicu, A.-M., Variable selection in generalized functional linear models, Stat, 2, 1, 86-101, (2013) · Zbl 07847473
[21] Gervini, D., Analysis of aneurisk65 data: warped logistic discrimination, Electron. J. Stat., 8, 2, 1930-1936, (2014) · Zbl 1305.62368
[22] Goia, A., A functional linear model for time series prediction with exogenous variables, Statist. Probab. Lett., 82, 5, 1005-1011, (2012) · Zbl 1241.62124
[23] Goia, A.; Vieu, P., A partitioned single functional index model, Comput. Statist., 1-20, (2013)
[24] Goldsmith, J.; Bobb, J.; Crainiceanu, C.; Caffo, B.; Reich, R., Penalized functional regression, J. Comput. Graph. Statist., 20, 4, 830-851, (2011)
[25] Gu, C.; Wahba, G., J. Comput. Graph. Statist., 2, 1, 97-117, (1993)
[26] Hastie, T. J.; Tibshirani, R. J., Generalized additive models, vol. 43, (1990), CRC Press · Zbl 0747.62061
[27] Horváth, L.; Kokoszka, P., Inference for functional data with applications, vol. 200, (2012), Springer Science & Business Media · Zbl 1279.62017
[28] Ivanescu, A. E.; Staicu, A.-M.; Scheipl, F.; Greven, S., Penalized function-on-function regression, Comput. Statist., 1-30, (2014)
[29] James, G., Generalized linear models with functional predictors, J. R. Stat. Soc. Ser. B Stat. Methodol., 64, 3, 411-432, (2002) · Zbl 1090.62070
[30] James, G. M.; Silverman, B. W., Functional adaptive model estimation, J. Amer. Statist. Assoc., 100, 470, 565-576, (2005) · Zbl 1117.62364
[31] Kudraszow, N. L.; Vieu, P., Uniform consistency of knn regressors for functional variables, Statist. Probab. Lett., 83, 8, 1863-1870, (2013) · Zbl 1277.62113
[32] Lian, H., Functional partial linear model, J. Nonparametr. Stat., 23, 1, 115-128, (2011) · Zbl 1359.62157
[33] Maity, A.; Huang, J. Z., Partially linear varying coefficient models stratified by a functional covariate, Statist. Probab. Lett., 82, 10, 1807-1814, (2012) · Zbl 1348.62142
[34] Marra, G.; Wood, S. N., Coverage properties of confidence intervals for generalized additive model components, Scand. J. Statist., 39, 1, 53-74, (2012) · Zbl 1246.62058
[35] McLean, M.W., Hooker, G., Ruppert, D., 2015. Restricted likelihood ratio tests for linearity in scalar-on-function regression. Pre-print, arXiv:1310:5811v1. · Zbl 1332.62250
[36] McLean, M. W.; Hooker, G.; Staicu, A.-M.; Scheipl, F.; Ruppert, D., Functional generalized additive models, J. Comput. Graph. Statist., 23, 1, 249-269, (2014)
[37] Muller, H.-G.; Stadtmuller, U., Generalized functional linear models, Ann. Statist., 33, 2, 774-805, (2005) · Zbl 1068.62048
[38] Nychka, D., Bayesian confidence intervals for smoothing splines, J. Amer. Statist. Assoc., 83, 404, 1134-1143, (1988)
[39] Piccinelli, M.; Bacigaluppiz, S.; Boccardi, E.; Ene-Iordache, B., Influence of internal carotid artery geometry on aneurysm location and orientation: a computational geometry study, Neurosurgery, 68, 5, 1270-1285, (2011)
[40] Ramsay, J. O.; Dalzell, C., Some tools for functional data analysis, J. R. Stat. Soc. Ser. B Stat. Methodol., 539-572, (1991) · Zbl 0800.62314
[41] Ramsay, J.; Silverman, B. W., Functional data analysis, (2005), Wiley Online Library · Zbl 1079.62006
[42] Reiss, P. T.; Ogden, T. R., Smoothing parameter selection for a class of semiparametric linear models, J. R. Stat. Soc. Ser. B Stat. Methodol., 71, 2, 505-523, (2009) · Zbl 1248.62057
[43] Ruppert, D., Selecting the number of knots for penalized splines, J. Comput. Graph. Statist., 11, 4, 735-757, (2002)
[44] Ruppert, D.; Wand, M. P.; Carroll, R. J., Semiparametric regression, vol. 12, (2003), Cambridge University Press · Zbl 1038.62042
[45] Sangalli, L. M.; Secchi, P.; Vantini, S., Rejoinder: analysis of aneurisk65 data, Electron. J. Stat., 8, 2, 1937-1939, (2014) · Zbl 1305.62378
[46] Sangalli, L. M.; Secchi, P.; Vantini, S.; Veneziani, A., A case study in exploratory functional data analysis: geometrical features of the internal carotid artery, J. Amer. Statist. Assoc., 104, 485, (2009) · Zbl 1388.62191
[47] Silverman, B. W., Some aspects of the spline smoothing approach to non-parametric regression curve Fitting, J. R. Stat. Soc. Ser. B Stat. Methodol., 47, 1, 1-52, (1985) · Zbl 0606.62038
[48] Srivastava, A.; Klassen, E.; Joshi, S. H.; Jermyn, I. H., Shape analysis of elastic curves in Euclidean spaces, IEEE Trans. Pattern Anal. Mach. Intell., 33, 7, 1415-1428, (2011)
[49] Staicu, A.-M.; Lu, X., Analysis of aneurisk65 data: classification and curve registration, Electron. J. Stat., 8, 2, 1914-1919, (2014) · Zbl 1305.62379
[50] Staniswalis, J. G.; Lee, J. J., Nonparametric regression analysis of longitudinal data, J. Amer. Statist. Assoc., 93, 444, 1403-1418, (1998) · Zbl 1064.62522
[51] Wahba, G., Spline models for observational data, vol. 59, (1990), SIAM · Zbl 0813.62001
[52] Wood, S. N., Generalized additive models: an introduction with R, (2006), Chapman and Hall/CRC Boca Raton, FL · Zbl 1087.62082
[53] Wood, S. N., On \(p\)-values for smooth components of an extended generalized additive model, Biometrika, 100, 1, 221-228, (2013) · Zbl 1284.62270
[54] Xie, Q.; Kurtek, S.; Srivastava, A., Analysis of aneurisk65 data: elastic shape registration of curves, Electron. J. Stat., 8, 2, 1920-1929, (2014) · Zbl 1305.62381
[55] Yang, W.-H.; Wikle, C. K.; Holan, S. H.; Wildhaber, M. L., Ecological prediction with nonlinear multivariate time-frequency functional data models, J. Agric. Biol. Environ. Stat., 1-25, (2013) · Zbl 1303.62101
[56] Yao, F.; Müller, H.-G.; Clifford, A. J.; Dueker, S. R.; Follett, J.; Lin, Y.; Buchholz, B. A.; Vogel, J. S., Shrinkage estimation for functional principal component scores with application to the population kinetics of plasma folate, Biometrics, 59, 3, 676-685, (2003) · Zbl 1210.62076
[57] Zhao, N.; Bell, D. A.; Maity, A.; Staicu, A.-M.; Joubert, B. R.; London, S. J.; Wu, M. C., Global analysis of methylation profiles from high resolution cpg data, Genet. Epidemiol., 39, 2, 53-64, (2015)
[58] Zhou, J.; Chen, M., Spline estimators for semi-functional linear model, Statist. Probab. Lett., 82, 3, 505-513, (2012) · Zbl 1237.62051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.