×

Estimating extreme tail risk measures with generalized Pareto distribution. (English) Zbl 1468.62155

Summary: The generalized Pareto distribution (GPD) has been widely used in modelling heavy tail phenomena in many applications. The standard practice is to fit the tail region of the dataset to the GPD separately, a framework known as the peaks-over-threshold (POT) in the extreme value literature. In this paper we propose a new GPD parameter estimator, under the POT framework, to estimate common tail risk measures, the Value-at-Risk (VaR) and Conditional Tail Expectation (also known as Tail-VaR) for heavy-tailed losses. The proposed estimator is based on a nonlinear weighted least squares method that minimizes the sum of squared deviations between the empirical distribution function and the theoretical GPD for the data exceeding the tail threshold. The proposed method properly addresses a caveat of a similar estimator previously advocated, and further improves the performance by introducing appropriate weights in the optimization procedure. Using various simulation studies and a realistic heavy-tailed model, we compare alternative estimators and show that the new estimator is highly competitive, especially when the tail risk measures are concerned with extreme confidence levels.

MSC:

62-08 Computational methods for problems pertaining to statistics
62F10 Point estimation
62F12 Asymptotic properties of parametric estimators
62P05 Applications of statistics to actuarial sciences and financial mathematics
Full Text: DOI

References:

[1] Ahn, S.; Kim, J. H.T.; Ramaswami, V., A new class of models for heavy tailed distributions in finance and insurance risk, Insurance Math. Econom., 51, 43-52, (2012) · Zbl 1284.60024
[2] Artzner, P.; Delbaen, F.; Eber, J. M.; Heath, D., Coherent measures of risk, Math. Finance, 9, 203-228, (1999) · Zbl 0980.91042
[3] Ashkar, F.; Ouarda, T. B., On some methods of Fitting the generalized Pareto distribution, J. Hydrol., 177, 117-141, (1996)
[4] Balkema, A. A.; De Haan, L., Residual life time at great age, Ann. Probab., 792-804, (1974) · Zbl 0295.60014
[5] BCBS 2006. International convergence of capital measurement and capital standards: A revised framework, Comprehensive version. Basel Committee on Banking Supervision.
[6] Beirlant, J.; Goegebeur, Y.; Segers, J.; Teugels, J., Statistics of extremes: theory and applications, (2006), John Wiley & Sons
[7] Chen, F.; Lambert, D.; Pinheiro, J. C., Incremental quantile estimation for massive tracking, (Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2000), ACM), 516-522
[8] Davison, A. C., Modelling excesses over high thresholds, with an application, (Statistical Extremes and Applications, (1984), Springer), 461-482
[9] de Zea Bermudez, P.; Kotz, S., Parameter estimation of the generalized Pareto distribution part i, J. Statist. Plann. Inference, 140, 1353-1373, (2010) · Zbl 1185.62051
[10] Dupuis, D.; Tsao, M., A hybrid estimator for generalized Pareto and extreme-value distributions, Comm. Statist. Theory Methods, 27, 925-941, (1998) · Zbl 0900.62125
[11] Embrechts, P.; Klüppelberg, C.; Mikosch, T., Modelling extremal events, vol. 33, (1997), Springer Science & Business Media · Zbl 0873.62116
[12] Grimshaw, S. D., Computing maximum likelihood estimates for the generalized Pareto distribution, Technometrics, 35, 185-191, (1993) · Zbl 0775.62054
[13] He, X.; Fung, W., Method of medians for lifetime data with Weibull models, Stat. Med., 18, 2009, (1993)
[14] Hosking, J. R.; Wallis, J. R., Parameter and quantile estimation for the generalized Pareto distribution, Technometrics, 29, 339-349, (1987) · Zbl 0628.62019
[15] Juárez, S. F.; Schucany, W. R., Robust and efficient estimation for the generalized Pareto distribution, Extremes, 7, 237-251, (2004) · Zbl 1091.62017
[16] Liechty, J. C.; Lin, D. K.; McDermott, J. P., Single-pass low-storage arbitrary quantile estimation for massive datasets, Stat. Comput., 13, 91-100, (2003)
[17] Manistre, B. J.; Hancock, G. H., Variance of the CTE estimator, N. Am. Actuar. J., 9, 129-156, (2005) · Zbl 1085.62511
[18] McNeil, A. J.; Frey, R.; Embrechts, P., Quantitative risk management, (2005), Princeton University Press New Jersey · Zbl 1089.91037
[19] McNeil, A.J., Saladin, T., 1997. The peaks over thresholds method for estimating high quantiles of loss distributions. In: Proceedings of 28th International ASTIN Colloquium, pp. 23-43.
[20] Munro, J. I.; Paterson, M. S., Selection and sorting with limited storage, Theoret. Comput. Sci., 12, 315-323, (1980) · Zbl 0441.68067
[21] Nelder, J. A.; Mead, R., A simplex method for function minimization, Comput. J., 7, 308-313, (1965) · Zbl 0229.65053
[22] Neuts, M., Probability distributions of phase type, (Liber Amicorum Prof. Emeritus H. Florin, (1975), University of Louvain Belgium), 173-206
[23] Pickands, J., Statistical inference using extreme order statistics, Ann. Statist., 119-131, (1975) · Zbl 0312.62038
[24] Rasmussen, P. F., Generalized probability weighted moments: application to the generalized Pareto distribution, Water Resour. Res., 37, 1745-1751, (2001)
[25] Rohatgi, V. K., Statistical inference, (1984), John Wiley & Sons · Zbl 0537.62001
[26] Smith, R. L., Threshold methods for sample extremes, (Statistical Extremes and Applications, (1984), Springer), 621-638 · Zbl 0574.62090
[27] Smith, R. L., Maximum likelihood estimation in a class of nonregular cases, Biometrika, 72, 67-90, (1985) · Zbl 0583.62026
[28] Song, J.; Song, S., A quantile estimation for massive data with generalized Pareto distribution, Comput. Statist. Data Anal., 56, 143-150, (2012)
[29] Staudte, R. G.; Sheather, S. J., Robust estimation and testing, (1990), John Wiley & Sons New York · Zbl 0706.62037
[30] Zhang, J., Likelihood moment estimation for the generalized Pareto distribution, Aust. N. Z. J. Stat., 49, 69-77, (2007) · Zbl 1117.62023
[31] Zhang, J., Improving on estimation for the generalized Pareto distribution, Technometrics, 52, 335-339, (2010)
[32] Zhang, J.; Stephens, M. A., A new and efficient estimation method for the generalized Pareto distribution, Technometrics, 51, 316-325, (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.