×

General framework and model building in the class of hidden mixture transition distribution models. (English) Zbl 1468.62029

Summary: Modeling time series that present non-Gaussian features plays as central role in many fields, including finance, seismology, psychological, and life course studies. The Hidden Mixture Transition Distribution model is an answer to the complexity of such series. The observed heterogeneity can be induced by one or several latent factors, and each level of these factors is related to a different component of the observed process. The time series is then treated as a mixture and the relation between the components is governed by a Markovian latent transition process. This framework generalizes several specifications that appear separately in related literature. Both the expectation and the standard deviation of each component are allowed to be functions of the past of the process. The latent process can be of any order, and can be modeled using a discrete Mixture Transition Distribution. The effects of covariates at the visible and hidden levels are also investigated. One of the main difficulties lies in correctly specifying the structure of the model. Therefore, we propose a hierarchical model selection procedure that exploits the multilevel structure of our approach. Finally, we illustrate the model and the model selection procedure through a real application in social science.

MSC:

62-08 Computational methods for problems pertaining to statistics
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62P25 Applications of statistics to social sciences
Full Text: DOI

References:

[1] Bartolucci, F.; Farcomeni, A., A note on the mixture transition distribution and hidden Markov models, J. Time Ser. Anal., 31, 2, 132-138, (2010) · Zbl 1224.62030
[2] Basford, K. E.; Greenway, D.; McLachlan, G. J.; Peel, D., Standard errors of fitted means under normal mixture models, Comput. Statist., 12, 1-17, (1997) · Zbl 0924.62055
[3] Baum, L. E.; Petrie, Statistical inference for probabilistic functions of finite state Markov chains, Ann. Math. Stat., 37, 6, 1554-1563, (1966) · Zbl 0144.40902
[4] Baum, L. E.; Petrie, T.; Soules, G.; Weiss, N., A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains, Ann. Math. Stat., 41, 1, 164-171, (1970) · Zbl 0188.49603
[5] Berchtold, A., The double chain Markov model, Comm. Statist. Theory Methods, 28, 11, 2569-2589, (1999) · Zbl 0973.62067
[6] Berchtold, A., High-order extensions of the double chain Markov model, Stoch. Models, 18, 2, 193-227, (2002) · Zbl 1006.60071
[7] Berchtold, A., Mixture transition distribution (MTD) modeling of heteroscedastic time series, Comput. Statist. Data Anal., 41, 399-411, (2003) · Zbl 1256.62048
[8] Berchtold, A., Optimisation of mixture models: comparison of different strategies, Comput. Statist., 19, 385-406, (2004) · Zbl 1068.65020
[9] Berchtold, A.; Raftery, A., The mixture transition distribution model for high-order Markov chains and non-Gaussian time series, Statist. Sci., 17, 3, 328-359, (2002) · Zbl 1013.62088
[10] Biernacki, C., Celeux, G., Govaert, G., 2000. Stratégies algorithmiques pour maximiser la vraisemblance dans les modèles de mélange. In: Actes des XXXII Journées de Statistique.
[11] Böhning, D., 2001. The potential of recent developments in nonparametric mixture distributions. In: Proceedings of the 10th International Symposium on Applied Stochastic Models and Data Analysis.
[12] Boldea, O.; Magnus, J. R., Maximum likelihood estimation of the multivariate normal mixture model, J. Amer. Statist. Assoc., 104, 488, 1539-1549, (2009) · Zbl 1205.62065
[13] Bollerslev, T.; Chou, R. Y.; Kroner, F., ARCH modeling in finance. A review of the theory and empirical evidence, J. Econometrics, 52, 5-59, (1992) · Zbl 0825.90057
[14] Box, G. E.; Jenkins, G. M.; Reinsel, G. C., Time series analysis, forecasting and control, (1994), Prentice Hall · Zbl 0858.62072
[15] Chariatte, V.; Berchtold, A.; Akré, C.; Michaud, P.-A.; Suris, J.-C., Missed appointments in an outpatient clinic for adolescents, an approach to predict the risk of missing, J. Adolesc. Health, 43, 1, 38-45, (2008)
[16] Dannemann, J.; Holzmann, H., Likelihood ratio testing for hidden Markov models under non-standard conditions, Scand. J. Statist., 35, 2, 309-321, (2008) · Zbl 1164.62032
[17] Dempster, A. P.; Lard, N. M.; Rubin, D. B., Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. Ser. B, 39, 1, 1-38, (1977) · Zbl 0364.62022
[18] Dietz, E.; Bohning, D., Statistical inference based on a general model of unobserved heterogeneity, (Fahrmeir, L.; Francis, F.; Gilchrist, R.; Tutz, G., Advances in GLIM and Statistical Modeling, Lecture Notes in Statistics, (1996), Springer Berlin, Heidelberg), 75-82
[19] Efron, B., Bootstrap methods: another look at the jacknife, Ann. Statist., 7, 1, 1-26, (1979) · Zbl 0406.62024
[20] Efron, B.; Tibshirani, R. J., An introduction to the bootstrap, (1994), CRC Press
[21] Elliott, R. J.; Hunterb, W. C.; Jamieson, B. M., Drift and volatility estimation in discrete time, J. Econom. Dynam. Control, 22, 209-218, (1998) · Zbl 0895.90047
[22] Frydman, H.; Schuermann, T., Credit rating dynamics and Markov mixture models, J. Bank. Finance, 32, 1062-1075, (2008)
[23] Gabadinho, A.; Ritschard, G.; Studer, M., Analyzing and visualizing state sequences in R with traminer, J. Stat. Softw., 40, 4, (2011)
[24] Giudici, P.; Rydén, T.; Vandekerkhove, P., Likelihood-ratio tests for hidden Markov models, Biometrics, 56, 3, 742-747, (2000) · Zbl 1060.62550
[25] Hamilton, J. D., A new apporach to the economic analysis of nonstationary time series and the business cycle, Econometrica, 57, 2, 357-384, (1989) · Zbl 0685.62092
[26] Hamilton, J. D., Time series analysis, (1994), Princeton University Press · Zbl 0831.62061
[27] Hassan, M. Y.; El-Bassiouni, M. Y., Modelling Poisson marked point processes using bivariate mixture transition distributions, J. Stat. Comput. Simul., 83, 8, 1440-1452, (2013) · Zbl 1453.62634
[28] Hassan, M. Y.; Lii, K.-S., Modeling marked point processes via bivariate mixture transition distribution models, J. Amer. Statist. Assoc., 101, 475, 1241-1252, (2006) · Zbl 1120.62324
[29] Hayashi, T., A discrete-time model of high-frequency stock returns, Quant. Finance, 4, 140-150, (2004) · Zbl 1409.62213
[30] Helske, J., Eerola, M., Tabus, I., 2010. Minimum description length based hidden Markov model clustering for life sequence analysis. In: Proceedings of the Third Workshop on Information Theoretic Methods in Science and Engineering.
[31] Hill, M., The panel study of income dynamics: A user’s guide, (1991), SAGE Publications
[32] Hox, J. J., Applied multilevel analysis, (1995), TT-Publikaties Amsterdam
[33] Kapetanios, G., A bootstrap procedure for panel data sets with many cross-sectional units, Econom. J., 11, 2, 377-395, (2008) · Zbl 1141.91639
[34] Kass, R. E.; Raftery, A. E., Bayes factors, J. Amer. Statist. Assoc., 90, 430, 773-795, (1995) · Zbl 0846.62028
[35] Kim, D.; Kon, S. J., Alternative models for the conditional heteroscedasticity of stock returns, J. Bus., 67, 4, 563-598, (1994)
[36] Kon, S. J., Models of stock returns: a comparison, J. Finance, 39, 1, 147-165, (1984)
[37] Kovar, J. G.; Rao, J. N.K.; Wu, C. F.J., Bootstrap and other methods to measure errors in survey estimates, Canad. J. Statist., 16, 25, (1988) · Zbl 0663.62018
[38] Le, N. D.; Martin, D. R.; Raftery, A. E., Modelling flat stretches, bursts, and outliers in time series using mixture transition distribution models, J. Amer. Statist. Assoc., 91, 436, 1504-1515, (1996) · Zbl 0881.62096
[39] Leroux, B. G., Consistent estimation of a mixing distribution, Ann. Statist., 20, 3, 1350-1360, (1992) · Zbl 0763.62015
[40] Le Strat, Y.; Carrat, F., Monitoring epidemiologic surveillance data using hidden Markov models, Stat. Med., 18, 24, 3463-3478, (1999)
[41] Lokshin, M.; Ravallion, M., Household income dynamics in two transition economies, World Bank, 1-40, (2001)
[42] Louis, T. A., Finding the observed information matrix when using the EM algorithm, J. Roy. Statist. Soc. Ser. B, 44, 2, 226-233, (1982) · Zbl 0488.62018
[43] Luo, J.; Qiu, H.-B., Parameter estimation of the WMTD model, Appl. Math. J. Chinese Univ., 24, 4, 379-388, (2009) · Zbl 1211.62054
[44] McLachlan, G. J.; Basford, K. E., Mixture models: inference and applications to clustering, (1988), Marcel Dekker Inc. · Zbl 0697.62050
[45] McLachlan, G. J.; Krishnan, T., The EM algorithm and extensions, (1996), John Wiley & Sons New York
[46] McLachlan, G.; Peel, D., (Finite Mixture Models, Wiley Series in Probability and Statistics, (2000)) · Zbl 0963.62061
[47] Muthen, B. O., Second-generation structural equation modeling with combination of categorical and continuous latent variables: new opportunities for latent class/latent growth modeling, (Collins, L. M.; Sayer, A., New Methods for the Analysis for Change, (2001), American Psychological Association Washington, DC), 291-322
[48] Netzer, O.; Lattin, J. M.; Srinivasan, V., A hidden Markov model of customer relationship dynamics, Mark. Sci., 27, 2, 185-204, (2008)
[49] Newton, M. A.; Raftery, A. E., Approximate Bayesian inference with the weighted likelihood bootstrap, J. Roy. Statist. Soc. Ser. B, 56, 1, 3-48, (1994) · Zbl 0788.62026
[50] Rabiner, L. I., A tutorial on hidden Markov models and selected applications in speech recognition, Proc. IEEE, 77, 257-286, (1989)
[51] Raftery, A. E., A model for high-order Markov chains, J. R. Stat. Soc. Ser. B, 47, 3, 528-539, (1985) · Zbl 0593.62091
[52] Raftery, A. E., Bayesian model selection in social research, Sociol. Methodol., 25, 111-163, (1995)
[53] Redner, R. A.; Walker, H. F., Mixture densities, maximum likelihood and the EM algorithm, SIAM Rev., 26, 195-239, (1984) · Zbl 0536.62021
[54] Schwarz, G. E., Estimating the dimension of a model, Ann. Statist., 6, 2, 461-464, (1978) · Zbl 0379.62005
[55] Sclattmann, P., (Medical Applications of Finite Mixture Models, Statistics for Biology and Health, (2009), Springer) · Zbl 1158.62082
[56] Shirley, K. E.; Small, D. S.; Lynch, K. G.; Maisto, S. A.; Oslin, D. W., Hidden Markov models for alcoholism treatment trial data, Ann. Appl. Stat., 4, 1, 366-395, (2010) · Zbl 1189.62176
[57] Stephens, M., Dealing with label switching in mixture models, J. R. Stat. Soc. Ser. B Stat. Methodol., 62, 4, 795-809, (2000) · Zbl 0957.62020
[58] Viterbi, A. J., Error bounds for convolutional codes and an asymptotically optimum decoding algorithm, IEEE Trans. Inform. Theory, 16, 2, 260-269, (1967) · Zbl 0148.40501
[59] Weigend, A. S.; Mangeas, M.; Srivastava, A. N., Nonlinear gated experts for time series: discovering regimes and avoiding overfitting, Int. J. Neural Syst., 6, 4, 373-399, (1995)
[60] Weigend, S. W.; Shi, S., Predicting daily probability distributions of S&P500 returns, J. Forecast., 19, 375-392, (2000)
[61] Wellekens, C., 1987. Explicit time correlation in hidden Markov models for speech recognition. In: Proceedings ICASSP. pp. 384-386.
[62] Wong, C. S.; Chan, W. S., Mixture Gaussian time series modelling of long-term market returns, N. Am. Actuar. J., (2005) · Zbl 1215.91068
[63] Wong, C. S.; Li, W. K., On a mixture autoregression model, J. R. Stat. Soc. Ser. B, 62, 92-115, (2000) · Zbl 0941.62095
[64] Wong, C. S.; Li, W. K., On a mixture autoregressive conditional heteroscedastic model, J. Amer. Statist. Assoc., 96, 982-995, (2001) · Zbl 1051.62091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.